cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A253712 Second partial sums of 12th powers (A008456).

Original entry on oeis.org

1, 4098, 539636, 17852390, 279305769, 2717541484, 18997064400, 103996064052, 471424600185, 1838853136318, 6344710049172, 19766667410282, 56486709893873, 149900664752760, 373060957502272, 877696226962440, 1964953733652369, 4209042621768474, 8666446428950740, 17219850236133006, 33129081554701913, 61893315504320036
Offset: 1

Views

Author

Luciano Ancora, Jan 12 2015

Keywords

Comments

The formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) are the m-th Faulhaber's formulas.

Programs

  • Magma
    [(n+1)^2*n*(n+2)*(30*n^10+300*n^9+925*n^8+200*n^7-3022*n^6-772*n^5+7073*n^4-1228*n^3-7888*n^2+5528*n-691)/5460: n in [1..30]]; // Vincenzo Librandi, Jan 19 2015
  • Mathematica
    RecurrenceTable[{a[n] == 2 a[n - 1] - a[n - 2] + n^12, a[1] == 1, a[2] == 4098}, a, {n, 1, 25}] (* Bruno Berselli, Jan 19 2015 *)
    Table[(n + 1)^2 n (n + 2) (30 n^10 + 300 n^9 + 925 n^8 + 200 n^7 - 3022 n^6 - 772 n^5 + 7073 n^4 - 1228 n^3 - 7888 n^2 + 5528 n - 691)/5460, {n, 1, 25}] (* Vincenzo Librandi, Jan 19 2015 *)
    Nest[Accumulate[#]&,Range[30]^12,2] (* Harvey P. Dale, Aug 17 2020 *)

Formula

a(n) = (n+1)^2*n*(n+2)*(30*n^10+300*n^9+925*n^8+200*n^7-3022*n^6-772*n^5+7073*n^4-1228*n^3-7888*n^2+5528*n-691)/5460.
a(n) = 2*a(n-1)-a(n-2)+n^12.
G.f.: x*(1 + 4083*x + 478271*x^2 + 10187685*x^3 + 66318474*x^4 + 162512286*x^5 + 162512286*x^6 + 66318474*x^7 + 10187685*x^8 + 478271*x^9 + 4083*x^10 + x^11)/(1-x)^15. - Vincenzo Librandi, Jan 19 2015

Extensions

a(22) corrected by Vincenzo Librandi, Jan 19 2015

A268335 Exponentially odd numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Vladimir Shevelev, Feb 01 2016

Keywords

Comments

The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - Amiram Eldar, Jan 22 2024

Crossrefs

Programs

  • Mathematica
    Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
    Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k,2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A268335_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(e&1 for e in factorint(n).values()),count(max(startvalue,1)))
    A268335_list = list(islice(A268335_gen(),20)) # Chai Wah Wu, Jun 22 2023

Formula

Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - Amiram Eldar, Sep 26 2023

A030631 Numbers with 13 divisors.

Original entry on oeis.org

4096, 531441, 244140625, 13841287201, 3138428376721, 23298085122481, 582622237229761, 2213314919066161, 21914624432020321, 353814783205469041, 787662783788549761, 6582952005840035281, 22563490300366186081, 39959630797262576401, 116191483108948578241
Offset: 1

Views

Author

Keywords

Comments

12th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Subsequence of A008456.

Programs

Formula

a(n) = A000040(n)^(13-1) = A000040(n)^(12). - Omar E. Pol, May 06 2008
From Amiram Eldar, Jan 24 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(12)/zeta(24) = 218517792968475/(236364091*Pi^12).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(12) = 638512875/(691*Pi^12) = 1/A013670. (End)

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A262675 Exponentially evil numbers.

Original entry on oeis.org

1, 8, 27, 32, 64, 125, 216, 243, 343, 512, 729, 864, 1000, 1024, 1331, 1728, 1944, 2197, 2744, 3125, 3375, 4000, 4096, 4913, 5832, 6859, 7776, 8000, 9261, 10648, 10976, 12167, 13824, 15552, 15625, 16807, 17576, 19683, 21952, 23328, 24389, 25000, 27000, 27648, 29791
Offset: 1

Views

Author

Vladimir Shevelev, Sep 27 2015

Keywords

Comments

Or the numbers whose prime power factorization contains primes only in evil exponents (A001969): 0, 3, 5, 6, 9, 10, 12, ...
If n is in the sequence, then n^2 is also in the sequence.
A268385 maps each term of this sequence to a unique nonzero square (A000290), and vice versa. - Antti Karttunen, May 26 2016

Examples

			864 = 2^5*3^3; since 5 and 3 are evil numbers, 864 is in the sequence.
		

Crossrefs

Subsequence of A036966.
Apart from 1, a subsequence of A270421.
Indices of ones in A270418.
Sequence A270437 sorted into ascending order.

Programs

  • Haskell
    a262675 n = a262675_list !! (n-1)
    a262675_list = filter
       (all (== 1) . map (a010059 . fromIntegral) . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 25 2015
    
  • Mathematica
    {1}~Join~Select[Range@ 30000, AllTrue[Last /@ FactorInteger[#], EvenQ@ First@ DigitCount[#, 2] &] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *)
    expEvilQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], EvenQ[DigitCount[#, 2, 1]] &]; With[{max = 30000}, Select[Union[Flatten[Table[i^2*j^3, {j, Surd[max, 3]}, {i, Sqrt[max/j^3]}]]], expEvilQ]] (* Amiram Eldar, Dec 01 2023 *)
  • PARI
    isok(n) = {my(f = factor(n)); for (i=1, #f~, if (hammingweight(f[i,2]) % 2, return (0));); return (1);} \\ Michel Marcus, Sep 27 2015
    
  • Perl
    use ntheory ":all"; sub isok { my @f = factor_exp($[0]); return scalar(grep { !(hammingweight($->[1]) % 2) } @f) == @f; } # Dana Jacobsen, Oct 26 2015

Formula

Product_{k=1..A001221(n)} A010059(A124010(n,k)) = 1. - Reinhard Zumkeller, Oct 25 2015
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=2} 1/p^A001969(k)) = Product_{p prime} f(1/p) = 1.2413599378..., where f(x) = (1/(1-x) + Product_{k>=0} (1 - x^(2^k)))/2. - Amiram Eldar, May 18 2023, Dec 01 2023

Extensions

More terms from Michel Marcus, Sep 27 2015

A123868 a(n) = n^12 - 1.

Original entry on oeis.org

0, 4095, 531440, 16777215, 244140624, 2176782335, 13841287200, 68719476735, 282429536480, 999999999999, 3138428376720, 8916100448255, 23298085122480, 56693912375295, 129746337890624, 281474976710655, 582622237229760, 1156831381426175, 2213314919066160
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 13 = 0 iff n mod 13 > 0; a(A008595(n)) = 12; a(A113763(n)) = 0.

Crossrefs

Programs

Formula

From Chai Wah Wu, Jun 18 2016: (Start)
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13) for n > 12.
G.f.: x*(4095 + 478205*x + 10187905*x^2 + 66317979*x^3 + 162513078*x^4 + 162511362*x^5 + 66319266*x^6 + 10187190*x^7 + 478491*x^8 + 4017*x^9 + 13*x^10 - x^11)/(1 - x)^13. (End)

A010805 17th powers: a(n) = n^17.

Original entry on oeis.org

0, 1, 131072, 129140163, 17179869184, 762939453125, 16926659444736, 232630513987207, 2251799813685248, 16677181699666569, 100000000000000000, 505447028499293771, 2218611106740436992, 8650415919381337933, 30491346729331195904, 98526125335693359375, 295147905179352825856, 827240261886336764177
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013675 (zeta(17)).
Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A001016 (8th powers), A008456 (12th powers).

Programs

Formula

Totally multiplicative sequence with a(p) = p^17 for prime p. Multiplicative sequence with a(p^e) = p^(17e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-17).
Sum_{n>=1} 1/a(n) = zeta(17) = A013675. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 65535*zeta(17)/65536. - Amiram Eldar, Oct 09 2020

A010812 24th powers: a(n) = n^24.

Original entry on oeis.org

0, 1, 16777216, 282429536481, 281474976710656, 59604644775390625, 4738381338321616896, 191581231380566414401, 4722366482869645213696, 79766443076872509863361, 1000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008456 (n^12).

Programs

Formula

Totally multiplicative sequence with a(p) = p^24 for prime p. Multiplicative sequence with a(p^e) = p^(24e). - Jaroslav Krizek, Nov 01 2009
a(n) = A008456(n)^2. - Michel Marcus, Feb 27 2018
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-24).
Sum_{n>=1} 1/a(n) = zeta(24) = 236364091*Pi^24/201919571963756521875.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8388607*zeta(24)/8388608 = 1982765468311237*Pi^24/1693824136731743669452800000. (End)

A089081 26th powers: a(n) = n^26.

Original entry on oeis.org

0, 1, 67108864, 2541865828329, 4503599627370496, 1490116119384765625, 170581728179578208256, 9387480337647754305649, 302231454903657293676544, 6461081889226673298932241, 100000000000000000000000000
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Dec 04 2003

Keywords

Crossrefs

Programs

Formula

a(n) = n^26.
Completely multiplicative sequence with a(p) = p^26 for prime p. Multiplicative sequence with a(p^e) = p^(26e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-26).
Sum_{n>=1} 1/a(n) = zeta(26) = 1315862*Pi^26/11094481976030578125.
Sum_{n>=1} (-1)^(n+1)/a(n) = 33554431*zeta(26)/33554432 = 22076500342261*Pi^26/186134520519971831808000000. (End)

A022528 Nexus numbers (n+1)^12-n^12.

Original entry on oeis.org

1, 4095, 527345, 16245775, 227363409, 1932641711, 11664504865, 54878189535, 213710059745, 717570463519, 2138428376721, 5777672071535, 14381984674225, 33395827252815, 73052425515329, 151728638820031, 301147260519105, 574209144196415
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=11 of array A047969.

Programs

  • Magma
    [(n+1)^12-n^12: n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Mathematica
    lst={};Do[a=n^6;b=(n+1)^6;s=(a+b)*(b-a);AppendTo[lst,s],{n,0,4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
    Table[(n+1)^12-n^12,{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
    LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,4095,527345,16245775,227363409,1932641711,11664504865,54878189535,213710059745,717570463519,2138428376721,5777672071535},20] (* Harvey P. Dale, Apr 23 2019 *)
  • PARI
    vector(30, n, n--; (n+1)^12-n^12) \\ Colin Barker, Nov 30 2014

Formula

a(n) = A008456(n+1) - A008456(n). - Colin Barker, Nov 30 2014
G.f.: (x +1)*(x^10 +4082*x^9 +474189*x^8 +9713496*x^7 +56604978*x^6 +105907308*x^5 +56604978*x^4 +9713496*x^3 +474189*x^2 +4082*x +1) / (x -1)^12. - Colin Barker, Nov 30 2014
G.f.: polylog(-12, x)*(1-x)/x. See the g.f. of Colin Barker (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021
Showing 1-10 of 27 results. Next