cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A155019 Integer part of square root of n^17 = A010805(n).

Original entry on oeis.org

0, 1, 362, 11363, 131072, 873464, 4114202, 15252229, 47453132, 129140163, 316227766, 710947978, 1489500287, 2941158941, 5521897022, 9926032708, 17179869184, 28761784747, 46753733110, 74029634996, 114486680447
Offset: 0

Views

Author

Keywords

Crossrefs

Integer part of square root of n^k: A000196 (k=1), A000093 (k=3), A155013 (k=5), A155014 (k=7), A155015 (k=11), A155016 (k=13), A155018 (k=15), this sequence (k=17).

Programs

  • Magma
    [Floor(Sqrt(n^17)): n in [0..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    a={};Do[AppendTo[a,IntegerPart[(n^17)^(1/2)]],{n,0,5!}];a
    Table[Floor[Sqrt[n^17]], {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=0,30, print1(floor(sqrt(n^17)), ", ")) \\ G. C. Greubel, Dec 30 2017
    

Extensions

Offset corrected by Alois P. Heinz, Sep 27 2014

A268335 Exponentially odd numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Vladimir Shevelev, Feb 01 2016

Keywords

Comments

The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - Amiram Eldar, Jan 22 2024

Crossrefs

Programs

  • Mathematica
    Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
    Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k,2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A268335_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(e&1 for e in factorint(n).values()),count(max(startvalue,1)))
    A268335_list = list(islice(A268335_gen(),20)) # Chai Wah Wu, Jun 22 2023

Formula

Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - Amiram Eldar, Sep 26 2023

A262675 Exponentially evil numbers.

Original entry on oeis.org

1, 8, 27, 32, 64, 125, 216, 243, 343, 512, 729, 864, 1000, 1024, 1331, 1728, 1944, 2197, 2744, 3125, 3375, 4000, 4096, 4913, 5832, 6859, 7776, 8000, 9261, 10648, 10976, 12167, 13824, 15552, 15625, 16807, 17576, 19683, 21952, 23328, 24389, 25000, 27000, 27648, 29791
Offset: 1

Views

Author

Vladimir Shevelev, Sep 27 2015

Keywords

Comments

Or the numbers whose prime power factorization contains primes only in evil exponents (A001969): 0, 3, 5, 6, 9, 10, 12, ...
If n is in the sequence, then n^2 is also in the sequence.
A268385 maps each term of this sequence to a unique nonzero square (A000290), and vice versa. - Antti Karttunen, May 26 2016

Examples

			864 = 2^5*3^3; since 5 and 3 are evil numbers, 864 is in the sequence.
		

Crossrefs

Subsequence of A036966.
Apart from 1, a subsequence of A270421.
Indices of ones in A270418.
Sequence A270437 sorted into ascending order.

Programs

  • Haskell
    a262675 n = a262675_list !! (n-1)
    a262675_list = filter
       (all (== 1) . map (a010059 . fromIntegral) . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 25 2015
    
  • Mathematica
    {1}~Join~Select[Range@ 30000, AllTrue[Last /@ FactorInteger[#], EvenQ@ First@ DigitCount[#, 2] &] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *)
    expEvilQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], EvenQ[DigitCount[#, 2, 1]] &]; With[{max = 30000}, Select[Union[Flatten[Table[i^2*j^3, {j, Surd[max, 3]}, {i, Sqrt[max/j^3]}]]], expEvilQ]] (* Amiram Eldar, Dec 01 2023 *)
  • PARI
    isok(n) = {my(f = factor(n)); for (i=1, #f~, if (hammingweight(f[i,2]) % 2, return (0));); return (1);} \\ Michel Marcus, Sep 27 2015
    
  • Perl
    use ntheory ":all"; sub isok { my @f = factor_exp($[0]); return scalar(grep { !(hammingweight($->[1]) % 2) } @f) == @f; } # Dana Jacobsen, Oct 26 2015

Formula

Product_{k=1..A001221(n)} A010059(A124010(n,k)) = 1. - Reinhard Zumkeller, Oct 25 2015
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=2} 1/p^A001969(k)) = Product_{p prime} f(1/p) = 1.2413599378..., where f(x) = (1/(1-x) + Product_{k>=0} (1 - x^(2^k)))/2. - Amiram Eldar, May 18 2023, Dec 01 2023

Extensions

More terms from Michel Marcus, Sep 27 2015

A022533 Nexus numbers (n+1)^17 - n^17.

Original entry on oeis.org

1, 131071, 129009091, 17050729021, 745759583941, 16163719991611, 215703854542471, 2019169299698041, 14425381885981321, 83322818300333431, 405447028499293771, 1713164078241143221, 6431804812640900941, 21840930809949857971, 68034778606362163471, 196621779843659466481
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=16 of A047969.
Cf. A010805 (n^17).

Programs

Formula

a(n) = A010805(n+1) - A010805(n). - Michel Marcus, Feb 27 2018

Extensions

More terms added by G. C. Greubel, Feb 27 2018

A170790 a(n) = n^9*(n^8 + 1)/2.

Original entry on oeis.org

0, 1, 65792, 64579923, 8590065664, 381470703125, 8463334761216, 116315277170407, 1125899973951488, 8338591043543529, 50000000500000000, 252723515428620731, 1109305555950108672, 4325207964992918653
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

Number of unoriented rows of length 17 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=65792, there are 2^17=131072 oriented arrangements of two colors. Of these, 2^9=512 are achiral. That leaves (131072-512)/2=65280 chiral pairs. Adding achiral and chiral, we get 65792. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 17 of A277504.
Cf. A010805 (oriented), A001017 (achiral).

Programs

  • GAP
    List([0..30], n -> n^9*(n^8+1)/2); # G. C. Greubel, Nov 15 2018
    
  • Magma
    [n^9*(n^8+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
    
  • Mathematica
    Table[(n^9 (n^8+1))/2,{n,0,20}] (* Harvey P. Dale, Oct 03 2016 *)
  • PARI
    for(n=0,30, print1(n^9*(n^8+1)/2, ", ")) \\ G. C. Greubel, Dec 06 2017
    
  • Python
    for n in range(0,20): print(int(n**9*(n**8 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
  • Sage
    [n^9*(n^8+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

G.f.: (x + 65774*x^2 + 63395820*x^3 + 7437692410*x^4 + 236676566180*x^5 + 2858646249342*x^6 + 15527826341908*x^7 + 41568611082650*x^8 + 57445191259830*x^9 + 41568611082650*x^10 + 15527826341908*x^11 + 2858646249342*x^12 + 236676566180*x^13 + 7437692410*x^14 + 63395820*x^15 + 65774*x^16 + x^17)/(1-x)^18. - G. C. Greubel, Dec 06 2017
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010805(n) + A001017(n)) / 2 = (n^17 + n^9) / 2.
G.f.: (Sum_{j=1..17} S2(17,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..9} S2(9,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..16} A145882(17,k) * x^k / (1-x)^18.
E.g.f.: (Sum_{k=1..17} S2(17,k)*x^k + Sum_{k=1..9} S2(9,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>17, a(n) = Sum_{j=1..18} -binomial(j-19,j) * a(n-j). (End)

A165254 a(n) = 9 + n^17.

Original entry on oeis.org

9, 10, 131081, 129140172, 17179869193, 762939453134, 16926659444745, 232630513987216, 2251799813685257, 16677181699666578, 100000000000000009, 505447028499293780, 2218611106740437001, 8650415919381337942
Offset: 0

Views

Author

Philippe Deléham, Sep 10 2009

Keywords

Crossrefs

Cf. A010805.

Programs

Formula

a(n) = A010805(n) + 9.

Extensions

Corrected and edited by Vincenzo Librandi, Jun 19 2011

A276962 Numbers n such that n^17 - 1 is semiprime.

Original entry on oeis.org

20, 62, 84, 368, 410, 614, 720, 740, 762, 1230, 1280, 1988, 1998, 2064, 2100, 2268, 2312, 2468, 2678, 2940, 3002, 3324, 3392, 3462, 3768, 3848, 3968, 4178, 4244, 4680, 4968, 5022, 5024, 5198, 5304, 5382, 5624, 5822, 5850, 6048, 6248, 6338, 6354, 6398, 6428
Offset: 1

Views

Author

Gary E. Davis, Sep 22 2016

Keywords

Comments

Least number such that n^17-1 and n^17+1 are both semiprime is 93888. - Altug Alkan, Sep 30 2016

Examples

			a(1) = 20 because 20^17-1 = 13107199999999999999999 = 19*689852631578947368421 is the first occurrence of n^17 - 1 as a product of two distinct primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],PrimeOmega[#^17-1] == 2 &]
  • PARI
    isok(n) = bigomega(n^17-1)==2; \\ Michel Marcus, Sep 23 2016
    
  • PARI
    lista(nn) = forprime(p=2, nn, if(ispseudoprime(((p+1)^17-1)/p), print1(p+1, ", "))); \\ Altug Alkan, Sep 30 2016

Extensions

More terms from Altug Alkan, Sep 30 2016
Showing 1-7 of 7 results.