A010803 15th powers: a(n) = n^15.
0, 1, 32768, 14348907, 1073741824, 30517578125, 470184984576, 4747561509943, 35184372088832, 205891132094649, 1000000000000000, 4177248169415651, 15407021574586368, 51185893014090757, 155568095557812224
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1).
Crossrefs
Programs
-
Magma
[n^15: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
-
Mathematica
Table[n^15,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2010 *)
-
PARI
for(n=0,15,print1(n^15,", ")) \\ Derek Orr, Feb 27 2017
-
PARI
A010803(n)=n^15 \\ M. F. Hasler, Jul 03 2025
-
Python
A010803 = lambda n: n**15 # M. F. Hasler, Jul 03 2025
Formula
Totally multiplicative with a(p) = p^15 for prime p. Multiplicative with a(p^e) = p^(15e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-15).
Sum_{n>=1} 1/a(n) = zeta(15) = A013673. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 16383*zeta(15)/16384. - Amiram Eldar, Oct 08 2020