A010811 23rd powers: a(n) = n^23.
0, 1, 8388608, 94143178827, 70368744177664, 11920928955078125, 789730223053602816, 27368747340080916343, 590295810358705651712, 8862938119652501095929, 100000000000000000000000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (24, -276, 2024, -10626, 42504, -134596, 346104, -735471, 1307504, -1961256, 2496144, -2704156, 2496144, -1961256, 1307504, -735471, 346104, -134596, 42504, -10626, 2024, -276, 24, -1).
Programs
-
Magma
[n^23: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
-
Maple
A010811:=n->n^23; seq(A010811(n), n=0..20); # Wesley Ivan Hurt, Apr 07 2014
-
Mathematica
Table[n^23, {n, 0, 20}] (* Wesley Ivan Hurt, Apr 07 2014 *)
-
PARI
a(n)=n^23 \\ Charles R Greathouse IV, Jun 28 2015
Formula
Completely multiplicative sequence with a(p) = p^23 for prime p. Multiplicative sequence with a(p^e) = p^(23e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-23).
Sum_{n>=1} 1/a(n) = zeta(23).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4194303*zeta(23)/4194304. (End)