cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248109 Integer part of square root of A010811(n) = n^23.

Original entry on oeis.org

0, 1, 2896, 306827, 8388608, 109183006, 888667667, 5231514822, 24296003999, 94143178827, 316227766016, 946271759726, 2573856496961, 6461726194556, 15152085430295, 33500360392119, 70368744177664, 141306648466586
Offset: 0

Views

Author

Karl V. Keller, Jr., Oct 01 2014

Keywords

Examples

			for n = 4, floor(sqrt(n^23)) = 8388608.
		

Crossrefs

Cf. A010811 (n^23).

Programs

  • Mathematica
    IntegerPart[Sqrt[#]]&/@(Range[0,20]^23) (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    a(n)=sqrtint(n^23) \\ Charles R Greathouse IV, Oct 01 2014
  • Python
    from decimal import Decimal, getcontext
    getcontext().prec = 100
    for n in range(0,1001): print(n, int(Decimal(n**23).sqrt()))
    

Formula

a(n) = floor(sqrt(n^23)).

A268335 Exponentially odd numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Vladimir Shevelev, Feb 01 2016

Keywords

Comments

The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - Amiram Eldar, Jan 22 2024

Crossrefs

Programs

  • Mathematica
    Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
    Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k,2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A268335_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(e&1 for e in factorint(n).values()),count(max(startvalue,1)))
    A268335_list = list(islice(A268335_gen(),20)) # Chai Wah Wu, Jun 22 2023

Formula

Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - Amiram Eldar, Sep 26 2023

A262675 Exponentially evil numbers.

Original entry on oeis.org

1, 8, 27, 32, 64, 125, 216, 243, 343, 512, 729, 864, 1000, 1024, 1331, 1728, 1944, 2197, 2744, 3125, 3375, 4000, 4096, 4913, 5832, 6859, 7776, 8000, 9261, 10648, 10976, 12167, 13824, 15552, 15625, 16807, 17576, 19683, 21952, 23328, 24389, 25000, 27000, 27648, 29791
Offset: 1

Views

Author

Vladimir Shevelev, Sep 27 2015

Keywords

Comments

Or the numbers whose prime power factorization contains primes only in evil exponents (A001969): 0, 3, 5, 6, 9, 10, 12, ...
If n is in the sequence, then n^2 is also in the sequence.
A268385 maps each term of this sequence to a unique nonzero square (A000290), and vice versa. - Antti Karttunen, May 26 2016

Examples

			864 = 2^5*3^3; since 5 and 3 are evil numbers, 864 is in the sequence.
		

Crossrefs

Subsequence of A036966.
Apart from 1, a subsequence of A270421.
Indices of ones in A270418.
Sequence A270437 sorted into ascending order.

Programs

  • Haskell
    a262675 n = a262675_list !! (n-1)
    a262675_list = filter
       (all (== 1) . map (a010059 . fromIntegral) . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 25 2015
    
  • Mathematica
    {1}~Join~Select[Range@ 30000, AllTrue[Last /@ FactorInteger[#], EvenQ@ First@ DigitCount[#, 2] &] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *)
    expEvilQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], EvenQ[DigitCount[#, 2, 1]] &]; With[{max = 30000}, Select[Union[Flatten[Table[i^2*j^3, {j, Surd[max, 3]}, {i, Sqrt[max/j^3]}]]], expEvilQ]] (* Amiram Eldar, Dec 01 2023 *)
  • PARI
    isok(n) = {my(f = factor(n)); for (i=1, #f~, if (hammingweight(f[i,2]) % 2, return (0));); return (1);} \\ Michel Marcus, Sep 27 2015
    
  • Perl
    use ntheory ":all"; sub isok { my @f = factor_exp($[0]); return scalar(grep { !(hammingweight($->[1]) % 2) } @f) == @f; } # Dana Jacobsen, Oct 26 2015

Formula

Product_{k=1..A001221(n)} A010059(A124010(n,k)) = 1. - Reinhard Zumkeller, Oct 25 2015
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=2} 1/p^A001969(k)) = Product_{p prime} f(1/p) = 1.2413599378..., where f(x) = (1/(1-x) + Product_{k>=0} (1 - x^(2^k)))/2. - Amiram Eldar, May 18 2023, Dec 01 2023

Extensions

More terms from Michel Marcus, Sep 27 2015

A022539 Nexus numbers (n+1)^23 - n^23.

Original entry on oeis.org

1, 8388607, 94134790219, 70274600998837, 11850560210900461, 777809294098524691, 26579017117027313527, 562927063018624735369, 8272642309293795444217, 91137061880347498904071, 795430243255237372246531, 5729307023693999638873597, 35129168146463879355925669
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=22 of A047969.
Cf. A010811.

Programs

  • Magma
    [(n+1)^23 - n^23: n in [0..20]]; // G. C. Greubel, Feb 27 2018
  • Maple
    b:=23: a:=n->(n+1)^b-n^b: seq(a(n),n=0..18); # Muniru A Asiru, Feb 28 2018
  • Mathematica
    Differences/@Partition[Range[0,20]^23,2,1]//Flatten (* Harvey P. Dale, Apr 20 2016 *)
  • PARI
    for(n=0,20, print1((n+1)^23 - n^23, ", ")) \\ G. C. Greubel, Feb 27 2018
    

Formula

a(n) = A010811(n+1) - A010811(n). - Michel Marcus, Feb 27 2018

Extensions

Terms a(10) onward added by G. C. Greubel, Feb 27 2018

A036101 Centered cube numbers: (n+1)^23 + n^23.

Original entry on oeis.org

1, 8388609, 94151567435, 70462887356491, 11991297699255789, 801651152008680941, 28158477563134519159, 617664557698786568055, 9453233930011206747641, 108862938119652501095929
Offset: 0

Views

Author

Keywords

Comments

Can never be prime, as a(n) = (2n + 1) * (n^22 + 11n^21 + 121n^20 + 825n^19 + 4015n^18 + 14817n^17 + 43065n^16 + 101046n^15 + 194634n^14 + 311278n^13 + 416394n^12 + 467842n^11 + 442118n^10 + 350974n^9 + 233108n^8 + 128603n^7 + 58277n^6 + 21335n^5 + 6157n^4 + 1349n^3 + 211n^2 + 21n + 1). a(1) is semiprime (A001358). [Jonathan Vos Post, Aug 28 2011]

Examples

			a(2) = 1^23 + (1+1)^23 = 8388609 = 3 * 2796203, which is semiprime.
		

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

  • Magma
    [(n+1)^23+n^23: n in [0..20]]; // Vincenzo Librandi, Aug 28 2011
  • Mathematica
    Total/@Partition[Range[0,20]^23,2,1] (* Harvey P. Dale, Nov 02 2023 *)
Showing 1-5 of 5 results.