A010812 24th powers: a(n) = n^24.
0, 1, 16777216, 282429536481, 281474976710656, 59604644775390625, 4738381338321616896, 191581231380566414401, 4722366482869645213696, 79766443076872509863361, 1000000000000000000000000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
Crossrefs
Cf. A008456 (n^12).
Programs
-
Magma
[n^24: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
-
Mathematica
Range[0,10]^24 (* Harvey P. Dale, Sep 04 2017 *)
-
PARI
a(n) = n^24; \\ Michel Marcus, Feb 27 2018
Formula
Totally multiplicative sequence with a(p) = p^24 for prime p. Multiplicative sequence with a(p^e) = p^(24e). - Jaroslav Krizek, Nov 01 2009
a(n) = A008456(n)^2. - Michel Marcus, Feb 27 2018
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-24).
Sum_{n>=1} 1/a(n) = zeta(24) = 236364091*Pi^24/201919571963756521875.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8388607*zeta(24)/8388608 = 1982765468311237*Pi^24/1693824136731743669452800000. (End)