cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010885 Period 6: repeat [1, 2, 3, 4, 5, 6].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130484(n)+n+1. - Hieronymus Fischer, Jun 08 2007
41152/333333 = 0.123456123456123456... [Eric Desbiaux, Nov 03 2008]

Crossrefs

Cf. A177158 (decimal expansion of (103+2*sqrt(4171))/162). [From Klaus Brockhaus, May 03 2010]

Programs

Formula

a(n) = 1 + (n mod 6). - Paolo P. Lava, Nov 21 2006
a(n) = A010875(n)+1. G.f.: g(x)=(Sum_{0<=k<6} (k+1)*x^k)/(1-x^6). Also g(x)=(6*x^7-7*x^6+1)/((1-x^6)*(1-x)^2). - Hieronymus Fischer, Jun 08 2007
From Wesley Ivan Hurt, Jun 17 2016: (Start)
G.f.: (1+2*x+3*x^2+4*x^3+5*x^4+6*x^5)/(1-x^6).
a(n) = (21-3*cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/6.
a(n) = a(n-6) for n>5. (End)