A079496 a(0) = a(1) = 1; thereafter a(2*n+1) = 2*a(2*n) - a(2*n-1), a(2*n) = 4*a(2*n-1) - a(2*n-2).
1, 1, 3, 5, 17, 29, 99, 169, 577, 985, 3363, 5741, 19601, 33461, 114243, 195025, 665857, 1136689, 3880899, 6625109, 22619537, 38613965, 131836323, 225058681, 768398401, 1311738121, 4478554083, 7645370045, 26102926097, 44560482149, 152139002499, 259717522849, 886731088897
Offset: 0
Examples
1 + x + 3*x^2 + 5*x^3 + 17*x^4 + 29*x^5 + 99*x^6 + 169*x^7 + 577*x^8 + ...
References
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..2608
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 47, 56.
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv:1105.3399 [math.GM], 2011.
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Yujun Yang and Heping Zhang, Kirchhoff Index of linear hexagonal chains, Int. J. Quant. Chem. 108 (2008) 503-512, eq (3.3).
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Programs
-
Maple
H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -1): a := n -> `if`(n < 3, [1, 1, 3][n+1], 2^(n - 1)*H(n, irem(n, 2), 1/2)): seq(simplify(a(n)), n=0..26); # Peter Luschny, Sep 03 2019
-
Mathematica
a[1] = 1; a[2] = 3; a[3] = 5; a[n_] := a[n] = (a[n-1]*a[n-2] + 2) / a[n-3]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Jul 17 2013, after Paul D. Hanna *)
-
PARI
{a(n) = n = abs(n); 2^((4-n)\2) * real( (10 + 7 * quadgen(8)) / 2 * (2 + quadgen(8))^(n-3) ) } /* Michael Somos, Sep 03 2013 */
-
PARI
{a(n) = polcoeff( (1 + x - 3*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Sep 03 2013 */
Formula
a(2n+1) - a(2n) = a(2n) - a(2n-1) = A001542(n).
a(2n+1) = ceiling((2+sqrt(2))/4*(3+2*sqrt(2))^n), a(2n) = ceiling(1/2*(3+2*sqrt(2))^n).
G.f.: (1 + x - 3*x^2 - x^3)/(1 - 6*x^2 + x^4).
a(n)*a(n+3) - a(n+1)*a(n+2) = 2. - Paul D. Hanna, Feb 22 2003
a(n) = 6*a(n-2) - a(n-4). - R. J. Mathar, Apr 04 2008
a(-n) = a(n) = A010914(n-3)*2^floor((4 - n)/2). - Michael Somos, Sep 03 2013
a(n) = (sqrt(2)*sqrt(2+(3-2*sqrt(2))^n+(3+2*sqrt(2))^n))/(2+sqrt(2)+(-1)^n*(-2+sqrt(2))). - Gerry Martens, Jun 06 2015
a(n) = 2^(n - 1)*H(n, n mod 2, 1/2) for n >= 3 where H(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], -1). - Peter Luschny, Sep 03 2019
a(n) == Pell(n)^(-1) (mod Pell(n+1)) where Pell(n) = A000129(n), use the identity a(n)*Pell(n) - A084068(n-1)*Pell(n+1) = 1, taken modulo Pell(n+1). - Gary W. Adamson, Nov 21 2023
E.g.f.: cosh(x)*(cosh(sqrt(2)*x) + sinh(sqrt(2)*x)/sqrt(2)). - Stefano Spezia, Apr 21 2025
Extensions
a(0)=1 added by Michael Somos, Sep 03 2013
Comments