A010970 a(n) = binomial(n,17).
1, 18, 171, 1140, 5985, 26334, 100947, 346104, 1081575, 3124550, 8436285, 21474180, 51895935, 119759850, 265182525, 565722720, 1166803110, 2333606220, 4537567650, 8597496600, 15905368710, 28781143380, 51021117810, 88732378800, 151584480450, 254661927156
Offset: 17
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 17..1000
- Milan Janjic, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (18,-153,816,-3060,8568,-18564,31824,-43758,48620,-43758,31824,-18564,8568,-3060,816,-153,18,-1).
Programs
-
Magma
[ Binomial(n,17): n in [17..80]]; // Vincenzo Librandi, Mar 26 2011
-
Maple
seq(binomial(n,17),n=17..37); # Zerinvary Lajos, Aug 06 2008
-
Mathematica
Table[Binomial[n,17],{n,17,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
-
PARI
for(n=17,50, print1(binomial(n,17), ", ")) \\ G. C. Greubel, Nov 23 2017
Formula
a(n+16) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9)*(n+10)*(n+11)*(n+12)*(n+13)*(n+14)*(n+15)*(n+16)/17!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
G.f.: x^17/(1-x)^18. - Zerinvary Lajos, Aug 06 2008; R. J. Mathar, Jul 07 2009
a(n) = n/(n-17) * a(n-1), n > 17. - Vincenzo Librandi, Mar 26 2011
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=17} 1/a(n) = 17/16.
Comments