cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011199 a(n) = (n+1)*(2*n+1)*(3*n+1).

Original entry on oeis.org

1, 24, 105, 280, 585, 1056, 1729, 2640, 3825, 5320, 7161, 9384, 12025, 15120, 18705, 22816, 27489, 32760, 38665, 45240, 52521, 60544, 69345, 78960, 89425, 100776, 113049, 126280, 140505, 155760, 172081, 189504, 208065, 227800, 248745, 270936, 294409, 319200
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A079588.

Programs

  • GAP
    List([0..40], n-> (n+1)*(2*n+1)*(3*n+1) ); # G. C. Greubel, Mar 03 2020
  • Haskell
    a011199 n = product $ map ((+ 1) . (* n)) [1, 2, 3]
    -- Reinhard Zumkeller, Jun 08 2015
    
  • Magma
    [&*[j*n+1:j in [1..3]]: n in [0..40]]; // G. C. Greubel, Mar 03 2020
    
  • Maple
    seq(mul(j*n+1, j=1..3), n = 0..40); # G. C. Greubel, Mar 03 2020
  • Mathematica
    Product[j*Range[0,40] +1, {j,3}] (* G. C. Greubel, Mar 03 2020 *)
    LinearRecurrence[{4,-6,4,-1},{1,24,105,280},40] (* Harvey P. Dale, Apr 21 2020 *)
  • PARI
    vector(41, n, my(m=n-1); prod(j=1,3, j*m+1)) \\ G. C. Greubel, Mar 03 2020
    
  • Sage
    [product(j*n+1 for j in (1..3)) for n in (0..40)] # G. C. Greubel, Mar 03 2020
    

Formula

G.f.: (1 + 20*x + 15*x^2)/(x-1)^4. - Alois P. Heinz, Sep 04 2014
a(n) = 6*n^3 + 11*n^2 + 6*n + 1. - Reinhard Zumkeller, Jun 08 2015
E.g.f.: (1 + 23*x + 29*x^2 + 6*x^3)*exp(x). - G. C. Greubel, Mar 03 2020
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/4 - 4*log(2) + 9*log(3)/4.
Sum_{n>=0} (-1)^n/a(n) = 2*log(2) - (1 - sqrt(3)/2)*Pi. (End)