cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A011270 Hybrid binary rooted trees with n nodes whose root is labeled by "n".

Original entry on oeis.org

1, 1, 4, 18, 90, 481, 2690, 15547, 92124, 556664, 3417062, 21248966, 133576724, 847465593, 5419399722, 34895368578, 226050057378, 1472170887755, 9633297762870, 63305402213336, 417612181048826, 2764492667188504, 18358282050480384, 122265756020847943
Offset: 0

Views

Author

pallo(AT)u-bourgogne.fr (Jean Pallo)

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 18*x^3 + 90*x^4 + 481*x^5 + 2690*x^6 + 15547*x^7 + 92124*x^8 + 556664*x^9 + 3417062*x^10 + ...
where x = x*A(x) - x^2*A(x)^2/(1 - x*A(x))^2.
		

Crossrefs

Cf. A011272.

Programs

  • Maple
    G:= proc(n) option remember; if n<=0 then 1 else convert(series(
          (x^2*G(n-1)^3 +x*G(n-1)^2 +1)/ (1-x), x=0, n+1), polynom) fi
        end:
    a:= n-> coeff(1+x*G(n-1)^2, x, n):
    seq(a(n), n=0..20); # Alois P. Heinz, Aug 22 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1], (
          6*n*(210*n^2-411*n+163)*a(n-1)-4*(n-2)*(7*n-6)*(5*n-3)*a(n-2)
          +2*(n-3)*(2*n-3)*(35*n-16)*a(n-3))/(5*n*(n+1)*(35*n-51)))
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, May 18 2013
  • Mathematica
    a[0] = 1; a[n_] := n*HypergeometricPFQ[{1-n, n+1, n+2}, {3/2, 2}, -1/4]; Table[ a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 02 2015, after Vladimir Kruchinin *)

Formula

G.f.: = 1+x*G(x)^2, where G(x) is g.f. for A007863.
Reversion of x - (x/(1 - x))^2 = 0, 1, -1, -2, -3, -4, -5, ... - Olivier Gérard, Jul 05 2001
a(n) = (2/(n+2))*Sum_{j=0...n} binomial(n+j+1, n+1)*binomial(n+j+2, n-j). - Vladimir Kruchinin, Dec 24 2010
G.f. A(x) satisfies: A(x) = 1/(1 - Sum_{k>=1} k*x^k*A(x)^k). - Ilya Gutkovskiy, Apr 10 2018
G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=1} n^(n-1) * x^n*A(x)^(n+1) / (1 + (n-1)*x*A(x))^(n+1). - Paul D. Hanna, Oct 08 2023
a(n) ~ sqrt((35 + (869750 - 5250*sqrt(105))^(1/3) + 5*(14*(497 + 3*sqrt(105)))^(1/3))/525) / (sqrt(Pi) * n^(3/2) * ((2 - 104/(-181 + 105*sqrt(105))^(1/3) + (-181 + 105*sqrt(105))^(1/3))/6)^n). - Vaclav Kotesovec, Oct 08 2023

A011274 Triangle of numbers of hybrid rooted trees (divided by Fibonacci numbers).

Original entry on oeis.org

1, 2, 1, 7, 4, 1, 31, 18, 6, 1, 154, 90, 33, 8, 1, 820, 481, 185, 52, 10, 1, 4575, 2690, 1065, 324, 75, 12, 1, 26398, 15547, 6276, 2006, 515, 102, 14, 1, 156233, 92124, 37711, 12468, 3420, 766, 133, 16, 1, 943174, 556664, 230277, 78030, 22412, 5439, 1085, 168, 18, 1
Offset: 1

Views

Author

Jean Pallo (pallo(AT)u-bourgogne.fr)

Keywords

Comments

Triangle T(n,k) = [x^(n-k)] A(x)^k where A(x) is the o.g.f. of A007863. - Vladimir Kruchinin, Mar 17 2011
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A007863. - Philippe Deléham, Feb 03 2014

Examples

			     1
     2    1
     7    4    1
    31   18    6   1
   154   90   33   8  1
   820  481  185  52 10  1
  4575 2690 1065 324 75 12 1
Production matrix is:
   2   1
   3   2   1
   5   3   2   1
   8   5   3   2   1
  13   8   5   3   2   1
  21  13   8   5   3   2   1
  34  21  13   8   5   3   2   1
  55  34  21  13   8   5   3   2   1
  89  55  34  21  13   8   5   3   2   1
  ... - _Philippe Deléham_, Feb 03 2014
		

Crossrefs

Programs

  • Maple
    A011274 := proc(n,k) k/n*add( binomial(i+n-1,n-1)*binomial(i+n,n-k-i),i=0..n-k) ; end proc: # R. J. Mathar, Mar 21 2011
  • Mathematica
    t[n_, k_] := k/n*Binomial[n, k]*HypergeometricPFQ[ {k-n, n, n+1}, {1/2 + k/2, 1+k/2}, -1/4]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Dec 02 2011, after Vladimir Kruchinin *)
  • Maxima
    A011274(n,k):= k/n*sum(binomial(i+n-1,n-1)*binomial(i+n,n-k-i), i,0,n-k); /* Vladimir Kruchinin, Mar 17 2011 */

Formula

T(n,k) = (k/n) *Sum_{i=0..n-k} binomial(i+n-1,n-1)*binomial(i+n,n-k-i). - Vladimir Kruchinin, Mar 17 2011
(r/(m*n+r))*T((m+1)*n+r,m*n+r) = Sum_{k=1..n} k*T((m+1)*n-k,m*n)*T(r+k,r)/n. - Vladimir Kruchinin, Mar 17 2011
T(n,m) = (m/n)*Sum_{k=1..n-m+1} k*A007863(k-1)*T(n-k,m-1), 1 < m <= n. - Vladimir Kruchinin, Mar 17 2011
Showing 1-2 of 2 results.