cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011377 Expansion of 1/((1-x)*(1-2*x)*(1-x^2)).

Original entry on oeis.org

1, 3, 8, 18, 39, 81, 166, 336, 677, 1359, 2724, 5454, 10915, 21837, 43682, 87372, 174753, 349515, 699040, 1398090, 2796191, 5592393, 11184798, 22369608, 44739229, 89478471, 178956956, 357913926, 715827867, 1431655749, 2863311514, 5726623044, 11453246105, 22906492227, 45812984472, 91625968962
Offset: 0

Views

Author

Keywords

Crossrefs

Partial sums of A000975.
Second partial sums of A001045.
Cf. A135086.

Programs

  • GAP
    List([0..30], n-> (2^(n+5) -6*n -21 +(-1)^n)/12); # G. C. Greubel, Jun 02 2019
  • Magma
    [Floor((2^(n+4)-3*n-6)/6): n in [0..30]]; // Vincenzo Librandi, Aug 14 2011
    
  • Mathematica
    Table[(2^(n+5) -6*n-21+(-1)^n)/12, {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2011, modified by G. C. Greubel, Jun 02 2019 *)
    CoefficientList[Series[1/((1-x)(1-2x)(1-x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{3,-1,-3,2},{1,3,8,18},30] (* Harvey P. Dale, Apr 17 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/((1-x)*(1-2*x)*(1-x^2))) \\ G. C. Greubel, Sep 26 2017
    
  • Sage
    [(2^(n+5) -6*n-21+(-1)^n)/12 for n in (0..30)] # G. C. Greubel, Jun 02 2019
    

Formula

From Paul Barry, Jul 29 2004: (Start)
a(n) = Sum_{k=0..n+2} floor((n-k+2)/2) * 2^k;
a(n) = Sum_{k=0..n+2} floor(k/2) * 2^(n-k+2). (End)
a(n) = Sum_{k=0..floor((n+2)/2)} binomial(n-k+2, k+2)*2^k. - Paul Barry, Oct 25 2004
a(n) = floor((2^(n+4) - 3*n - 6)/6). - David W. Wilson, Feb 26 2006
a(n) = (2^(n+5) - 6*n - 21 + (-1)^n)/12. - Hieronymus Fischer, Dec 02 2006
Row sums of triangle A135086. - Gary W. Adamson, Nov 18 2007
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4). - Paul Curtz, Jul 29 2008
G.f.: Q(0)/(3*x*(1-x)^2), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
From Michael A. Allen, Jan 11 2022: (Start)
a(n) = J(n+3) - ceiling((n+3)/2), where Jacobsthal number J(n) = A001045(n).
a(n) = Sum_{j=1..n+1} j*J(n+2-j). (End)