cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011557 Powers of 10: a(n) = 10^n.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 10), L(1, 10), P(1, 10), T(1, 10). Essentially same as Pisot sequences E(10, 100), L(10, 100), P(10, 100), T(10, 100). See A008776 for definitions of Pisot sequences.
Same as k^n in base k. - Dominick Cancilla, Aug 02 2010 [Corrected by Jianing Song, Sep 17 2022]
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 10-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Smallest n+1 digit number greater than 0 (with offset 0). - Wesley Ivan Hurt, Jan 17 2014
Numbers with digit sum = 1, or, A007953(a(n)) = 1. - Reinhard Zumkeller, Jul 17 2014
Does not satisfy Benford's law. - N. J. A. Sloane, Feb 14 2017

References

  • Philip Morrison et al., Powers of Ten, Scientific American Press, 1982 and later editions.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A178501: this sequence with 0 prefixed.
Row 5 of A329332.

Programs

Formula

a(n) = 10^n.
a(n) = 10*a(n-1).
G.f.: 1/(1-10*x).
E.g.f.: exp(10*x).
A000005(a(n)) = A000290(n+1). - Reinhard Zumkeller, Mar 04 2007
a(n) = 60^n/6^n = A159991(n)/A000400(n). - Reinhard Zumkeller, May 02 2009
a(n) = A178501(n+1); for n > 0: a(n) = A178500(n). - Reinhard Zumkeller, May 28 2010
Sum_{n>0} 1/a(n) = 1/9 = A000012. - Stefano Spezia, Apr 28 2024

Extensions

Links to "Powers of Ten" books and videos added by N. J. A. Sloane, Nov 07 2009