cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011754 Number of ones in the binary expansion of 3^n.

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 6, 5, 6, 8, 9, 13, 10, 11, 14, 15, 11, 14, 14, 17, 17, 20, 19, 22, 16, 18, 24, 30, 25, 25, 25, 26, 26, 34, 29, 32, 27, 34, 36, 32, 28, 39, 38, 39, 34, 34, 45, 38, 41, 33, 41, 46, 42, 35, 39, 42, 39, 40, 42, 48, 56, 56, 49, 57, 56, 51, 45, 47, 55, 55, 64, 68, 58
Offset: 0

Views

Author

Allan C. Wechsler, Dec 11 1999

Keywords

Comments

Conjecture: a(n)/n tends to log(3)/(2*log(2)) = 0.792481250... (A094148). - Ed Pegg Jr, Dec 05 2002
Senge & Straus prove that for every m, there is some N such that for all n > N, a(n) > m. Dimitrov & Howe make this effective, proving that for n > 25, a(n) > 22. - Charles R Greathouse IV, Aug 23 2021
Ed Pegg's conjecture means that about half of the bits of 3^n are nonzero. It appears that the same is true for 5^n (A000351, cf. A118738) and 7^n (A000420). - M. F. Hasler, Apr 17 2024

References

  • S. Wolfram, "A new kind of science", p. 903.

Crossrefs

Cf. A007088, A000120 (Hamming weight), A000244 (3^n), A004656, A261009, A094148.
Cf. A118738 (same for 5^n).

Programs

Formula

a(n) = A000120(3^n). - Benoit Cloitre, Dec 06 2002
a(n) = A000120(A000244(n)). - Reinhard Zumkeller, Aug 14 2015

Extensions

More terms from Stefan Steinerberger, Apr 03 2006