cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011776 a(1) = 1; for n > 1, a(n) is defined by the property that n^a(n) divides n! but n^(a(n)+1) does not.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 2, 3, 3, 1, 4, 1, 4, 3, 2, 1, 7, 3, 2, 4, 4, 1, 7, 1, 6, 3, 2, 5, 8, 1, 2, 3, 9, 1, 6, 1, 4, 10, 2, 1, 11, 4, 6, 3, 4, 1, 8, 5, 9, 3, 2, 1, 14, 1, 2, 10, 10, 5, 6, 1, 4, 3, 11, 1, 17, 1, 2, 9, 4, 7, 6, 1, 19, 10, 2, 1, 13, 5, 2, 3, 8, 1, 21
Offset: 1

Views

Author

Keywords

Comments

From Stefano Spezia, Nov 08 2018: (Start)
It appears that for n > 1 a(n) = 1 iff n = 4 or a prime number (see A175787).
It appears that a(n) = 2 iff n is in A074845. (End)
Since a prime p is coprime to all positive integers less than p, a(p)=1. - Robert D. Rosales, Jun 17 2024
If n > 4 is composite then a(n) > 1. Proof: 1) If n is not a square of a prime, then n has a divisor d such that 1 < d < n/d < n, so d, n/d and n appear as different factors in n!, n^2 | n!, and therefore a(n) >= 2. 2) If n = p^2 is a square of a prime, then p, 2*p and p^2 appear as different factors in n! when p > 2, therefore a(n) >= 2 if n != 4. - Amiram Eldar, Jul 06 2024

Examples

			12^5 divides 12! but 12^6 does not so a(12) = 5.
		

References

  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 251.

Crossrefs

Diagonal of A090622.
Cf. A175787 (primes together with 4).

Programs

  • Haskell
    a011776 1 = 1
    a011776 n = length $
       takeWhile ((== 0) . (mod (a000142 n))) $ iterate (* n) n
    -- Reinhard Zumkeller, Sep 01 2012
    
  • Maple
    a := []; for n from 2 to 200 do i := 0: while n! mod n^i = 0 do i := i+1: od: a := [op(a),i-1]; od: a;
    # second Maple program:
    f:= proc(n, p) local c, k; c, k:= 0, p;
           while n>=k do c:= c+iquo(n, k); k:= k*p od; c
        end:
    a:= n-> min(seq(iquo(f(n, i[1]), i[2]), i=ifactors(n)[2])): a(1):=1:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 04 2012
  • Mathematica
    Do[m = 1; While[ IntegerQ[ n!/n^m], m++ ]; Print[m - 1], {n, 1, 100} ]
    HighestPower[n_,p_] := Module[{r,s=0,k=1}, While[r=Floor[n/p^k]; r>0, s=s+r; k++ ];s]; SetAttributes[HighestPower,Listable]; Join[{1}, Table[{p,e}=Transpose[FactorInteger[n]]; Min[Floor[HighestPower[n,p]/e]], {n,2,100}]] (* T. D. Noe, Oct 01 2008 *)
    Join[{1},Table[IntegerExponent[n!,n],{n,2,500}]] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
    f[n_, p_] := Module[{c=0, k=p}, While[n >= k , c = c + Quotient[n, k]; k = k*p ]; c]; a[1]=1; a[n_] := Min[ Table[ Quotient[f[n, i[[1]]], i[[2]]], {i, FactorInteger[n] }]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 03 2013, after Alois P. Heinz's Maple program *)
  • PARI
    a(n)=if(n>1, valuation(n!,n), 1); \\ Charles R Greathouse IV, Apr 10 2014
    
  • PARI
    vp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=if(n==1,return(1)); my(f=factor(n)); vecmin(vector(#f~, i, vp(n,f[i,1])\f[i,2])) \\ Charles R Greathouse IV, Apr 10 2014