cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011795 a(n) = floor(C(n,4)/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 7, 14, 25, 42, 66, 99, 143, 200, 273, 364, 476, 612, 775, 969, 1197, 1463, 1771, 2125, 2530, 2990, 3510, 4095, 4750, 5481, 6293, 7192, 8184, 9275, 10472, 11781, 13209, 14763, 16450, 18278, 20254, 22386, 24682, 27150, 29799, 32637, 35673, 38916, 42375, 46060, 49980, 54145, 58565, 63250, 68211, 73458, 79002, 84854, 91025, 97527, 104371
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = number of aperiodic necklaces (Lyndon words) with 5 black beads and n-5 white beads.

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 147.

Crossrefs

Same as A051170(n+1).
A column of triangle A011847.

Programs

  • Magma
    [Floor(Binomial(n+1,5)/(n+1)): n in [0..70]]; // Vincenzo Librandi Jun 19 2012
    
  • Maple
    seq(floor(binomial(n,4)/5), n=0.. 70); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    CoefficientList[Series[x^5(1+x^3)/((1-x)^3(1-x^2)(1-x^5)),{x,0,70}],x] (* Vincenzo Librandi, Jun 19 2012 *)
    CoefficientList[Series[x^4/5 (1/(1-x)^5-1/(1- x^5)),{x,0,70}],x] (* Herbert Kociemba, Oct 16 2016 *)
  • PARI
    a(n)=binomial(n,4)\5 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [binomial(n,4)//5 for n in range(71)] # G. C. Greubel, Oct 20 2024

Formula

G.f.: x^5*(1+x^3)/((1-x)^3*(1-x^2)*(1-x^5)) = x^5*(1-x+x^2)/((1-x)^5*(1+x+x^2+x^3+x^4)).
a(n) = floor(binomial(n+1,5)/(n+1)). - Gary Detlefs, Nov 23 2011