cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011863 Nearest integer to (n/2)^4.

Original entry on oeis.org

0, 0, 1, 5, 16, 39, 81, 150, 256, 410, 625, 915, 1296, 1785, 2401, 3164, 4096, 5220, 6561, 8145, 10000, 12155, 14641, 17490, 20736, 24414, 28561, 33215, 38416, 44205, 50625, 57720, 65536, 74120, 83521, 93789, 104976, 117135, 130321, 144590
Offset: 0

Views

Author

Keywords

Comments

First differences are in A019298.
The bisections are A000583 and A219086.
Number of ways to put n-1 copies of 1,2,3 into sets. [Zeilberger?]
s(n) is the number of 4-tuples (w,x,y,z) with all terms in {1,...,n} and |w-x| >= w + |y-z|; see A186707. - Clark Kimberling, May 24 2012

Crossrefs

Programs

  • Magma
    [ (2*n^4-(1-(-1)^n))/32: n in [0..50] ];
    
  • Maple
    seq(round((n/2)^4), n=0..40);
  • Mathematica
    Round[(Range[40]/2)^4] (* or *) LinearRecurrence[{4,-5,0,5,-4,1},{0,1,5,16,39,81},40] (* Harvey P. Dale, Feb 07 2015 *)
  • PARI
    a(n)=round((n/2)^4) \\ Charles R Greathouse IV, Jun 23 2011

Formula

G.f.: x^2*(1 + x + x^2)/((1 - x)^5*(1+x)).
a(n) = +4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6). - R. J. Mathar, Dec 07 2010
a(n)+a(n+1) = A002817(n). - R. J. Mathar, Dec 19 2008
a(n) = n^4/16 - 1/32 + (-1)^n/32 - R. J. Mathar, Dec 07 2010, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
a(n) = (2*A000583(n) + (-1)^n - 1)/32. - Bruno Berselli, Dec 07 2010, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
n*(n^2+n+2)*a(n+1) = 4*(n^2+2*n+2)*a(n)+(n+2)*(n^2+3*n+4)*a(n-1). Holonomic Ansatz with smallest order of recurrence. - Thotsaporn Thanatipanonda, Dec 12 2010
a(n) = floor(n^4/8)/2. - Gary Detlefs, Feb 19 2011, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
a(n) = A212714(n)/2, n >= 0. - Wolfdieter Lang, Oct 03 2016, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
E.g.f.: (1/32)*exp(-x)*(1 + exp(2*x)*(-1 + 2*x + 14*x^2 + 12*x^3 + 2*x^4)). - Stefano Spezia, Dec 29 2019
Sum_{n>=2} 1/a(n) = 6 + Pi^4/90 - 2*Pi*tanh(Pi/2). - Amiram Eldar, Aug 13 2022

Extensions

Missing a(0) added by N. J. A. Sloane, Dec 29 2019. As a result some of the comments and formulas will need to be adjusted.