cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011894 a(n) = floor(n*(n-1)*(n-2)/12).

Original entry on oeis.org

0, 0, 0, 0, 2, 5, 10, 17, 28, 42, 60, 82, 110, 143, 182, 227, 280, 340, 408, 484, 570, 665, 770, 885, 1012, 1150, 1300, 1462, 1638, 1827, 2030, 2247, 2480, 2728, 2992, 3272, 3570, 3885, 4218, 4569, 4940, 5330, 5740, 6170, 6622, 7095, 7590, 8107, 8648, 9212, 9800
Offset: 0

Views

Author

Keywords

Comments

a(n+1) = floor((n^3-n)/12) is an upper bound for the Kirchhoff index of a circulant graph with n vertices [Zhang & Yang]. - R. J. Mathar, Apr 26 2007
Also the matching number of the n-tetrahedral graph. - Eric W. Weisstein, Jun 20 2017

Crossrefs

Cf. A011886.

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)/12): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012
  • Maple
    seq(floor(binomial(n,3)/2), n=0..40); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    CoefficientList[Series[x^4*(2-x+x^2)/((1-x)^3*(1-x^4)),{x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *)
    (* Contributions from Eric W. Weisstein, Jun 20 2017 *)
    Table[(3*((-1)^n -1) + 2*n*(n-1)*(n-2) + 6*Sin[(n*Pi)/2])/24, {n,0,50}]
    LinearRecurrence[{3,-3,1,1,-3,3,-1}, {0,0,0,2,5,10,17}, 50] (* End *)
    Floor[Binomial[Range[0,50], 3]/2] (* G. C. Greubel, Oct 06 2024 *)
  • Sage
    [floor(binomial(n,3)/2) for n in range(41)] # Zerinvary Lajos, Dec 01 2009
    

Formula

From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +3*a(n-1) -3*a(n-2) +a(n-3) +a(n-4) -3*a(n-5) +3*a(n-6) -a(n-7).
G.f.: x^4*(2-x+x^2) / ( (1-x)^4*(1+x)*(1+x^2) ). (End)
a(n) = (1/24)*(2*n^3 - 6*n^2 + 4*n - 3*(1-(-1)^n)*(1 - (-1)^((2*n-1+(-1)^n)/4)) ). - Luce ETIENNE, Jun 26 2014