cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011920 a(n) = b(n)*(b(n)+1) = b(n) + ... + c(n), where b(n) = A011916(n), c(n) = A011918(n).

Original entry on oeis.org

12, 1980, 378840, 73419192, 14241916260, 2762844014580, 535977297450672, 103976830083273840, 20170969020163148220, 3913064012542622257452, 759114247456742016195720, 147264250942490855924510760
Offset: 1

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

References

  • Mario Velucchi "Seeing couples" in Recreational and Educational Computing, to appear 1997.

Programs

  • Maple
    A011922 := proc(n) (2+sqrt(1+((((2+sqrt(3))^(2*n)-(2-sqrt(3))^(2*n))^2)/4)))/3 ; expand(%) ; simplify(%) ; end proc:
    A011916 := proc(n) ((A011922(n)-1)+sqrt(3*A011922(n)^2-4*A011922(n)+1))/2 ; end proc:
    A011920 := proc(n) A011916(n)*(A011916(n)+1) ; end proc:
    seq(A011920(n),n=1..20) ; # R. J. Mathar, Apr 15 2010
  • Mathematica
    LinearRecurrence[{209,-2926,2926,-209,1},{12,1980,378840,73419192,14241916260},20] (* Harvey P. Dale, Jan 01 2021 *)

Formula

From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +209*a(n-1) -2926*a(n-2) +2926*a(n-3) -209*a(n-4) +a(n-5).
G.f.: -12*x*(1-44*x+11*x^2)/ ((x-1) * (x^2-14*x+1) * (x^2-194*x+1)). (End)

Extensions

More terms from R. J. Mathar, Apr 15 2010

A011916 a(n) = ((b(n)-1)+sqrt(3*b(n)^2-4*b(n)+1))/2, where b(n) is A011922(n).

Original entry on oeis.org

0, 3, 44, 615, 8568, 119339, 1662180, 23151183, 322454384, 4491210195, 62554488348, 871271626679, 12135248285160, 169022204365563, 2354175612832724, 32789436375292575, 456697933641263328, 6360981634602394019
Offset: 0

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

Comments

Integers k such that k^2 = Sum_{i=1..x} (k+i) for some value of x. 3 is a term because 3^2=9 and 4+5=9; 44 is a term because 44^2=1936 and the sum of (45,46,47,...,76) = 1936. - Gil Broussard, Dec 23 2008
Also the index of the first of two consecutive octagonal numbers whose sum is equal to the sum of two consecutive squares. - Colin Barker, Dec 20 2014
Also the index of a triangular number included in A239071. - Ivan Neretin, May 31 2015

References

  • Mario Velucchi, "Seeing couples" in Recreational and Educational Computing, to appear 1997. [apparently never materialized, Colin Barker, Dec 23 2014]

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 15 a[n - 1] - 15 a[n - 2] + a[n - 3], a[0] == 0, a[1] == 3, a[2] == 44}, a, {n, 0, 17}] (* Michael De Vlieger, Jul 02 2015 *)
    LinearRecurrence[{15,-15,1},{0,3,44},30] (* Harvey P. Dale, Jul 26 2018 *)
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( x*(1 - 3*x) / ((x-1) * (x^2 - 14*x + 1)) + x * O(x^n), n), polcoeff( x*(x - 3) / ((x-1) * (x^2 - 14*x + 1)) + x * O(x^n), n))} /* Michael Somos, Jul 27 2012 */
    
  • PARI
    concat(0, Vec(x*(-3+x)/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, Dec 20 2014

Formula

From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +15*a(n-1) -15*a(n-2) +a(n-3).
G.f.: x*(-3 + x) / ((x - 1)*(x^2 - 14*x + 1)). (End)
From Michael Somos, Jul 27 2012: (Start)
a(n) = A109437(2*n).
a(-1 - n) = -A109437(2*n + 1). (End)
a(n) = (A001353(n+1)^2 - A001075(n)^2)/4. - Richard R. Forberg, Aug 26 2013
a(n) = (-2-(7-4*sqrt(3))^n*(-1+sqrt(3))+(1+sqrt(3))*(7+4*sqrt(3))^n)/12. - Colin Barker, Mar 05 2016

Extensions

More terms from R. J. Mathar, Apr 15 2010
Added a(0)=0, Michael Somos, Jul 27 2012

A011922 a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) with a(0)=1, a(1)=3, and a(2)=33.

Original entry on oeis.org

1, 3, 33, 451, 6273, 87363, 1216801, 16947843, 236052993, 3287794051, 45793063713, 637815097923, 8883618307201, 123732841202883, 1723376158533153, 24003533378261251, 334326091137124353, 4656561742541479683, 64857538304443591201, 903348974519668797123, 12582028104970919568513
Offset: 0

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

References

  • Mario Velucchi, Seeing couples, in Recreational and Educational Computing, to appear 1997.

Crossrefs

Programs

  • Magma
    I:=[1,3,33]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..17]]; // Bruno Berselli, Jul 09 2011
    
  • Maple
    a:= gfun:-rectoproc({a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3), a(0)=1,a(1)=3,a(2)=33},a(n),remember):
    map(a,[$0..100]); # Robert Israel, Jul 02 2015
  • Mathematica
    RecurrenceTable[{a[n] == 15 a[n - 1] - 15 a[n - 2] + a[n - 3], a[0] == 1, a[1] == 3, a[2] == 33}, a, {n, 0, 15}] (* Michael De Vlieger, Jul 02 2015 *)
    LinearRecurrence[{15,-15,1},{1,3,33},30] (* Harvey P. Dale, Dec 04 2018 *)
  • Maxima
    a[0]:1$ a[1]:3$ a[2]:33$ a[n]:=15*a[n-1]-15*a[n-2]+a[n-3]$ makelist(a[n], n, 0, 16); /* Bruno Berselli, Jul 09 2011 */
    
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-15,15]^n*[1;3;33])[1,1] \\ Charles R Greathouse IV, Jul 02 2015

Formula

a(n) = (2+sqrt(1+((((2+sqrt(3))^(2*n)-(2-sqrt(3))^(2*n))^2)/4)))/3. [corrected by Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 30 2001]
a(n) = ((7+4*sqrt(3))^n+(7-4*sqrt(3))^n+4)/6. - Bruno Berselli, Jul 09 2011
G.f.: (1-12*x+3*x^2)/ ((1-x) * (x^2-14*x+1)). - R. J. Mathar, Apr 15 2010
Sqrt(3) = 1 + Sum_{n>=1} 2/a(n) = 1 + 2/3 + 2/33 + ... - Gary W. Adamson, Jun 12 2003
a(n)^2 = A103974(n+1)^2 - (4*A007655(n+1))^2. - Paul D. Hanna, Mar 06 2005
a(n) = (A011943(n+1) + 2)/3. - Ralf Stephan, Aug 13 2013
a(n) = A001075(n)^2 - A001353(n)^2. - Richard R. Forberg, Aug 24 2013
E.g.f.: exp(x)*(2 + exp(6*x)*cosh(4*sqrt(3)*x))/3. - Stefano Spezia, Dec 11 2022

Extensions

Recurrence in definition by R. J. Mathar, Apr 15 2010
Showing 1-3 of 3 results.