A011943 Numbers k such that any group of k consecutive integers has integral standard deviation (viz. A011944(k)).
1, 7, 97, 1351, 18817, 262087, 3650401, 50843527, 708158977, 9863382151, 137379191137, 1913445293767, 26650854921601, 371198523608647, 5170128475599457, 72010600134783751, 1002978273411373057, 13969685227624439047, 194572614913330773601, 2710046923559006391367
Offset: 1
References
- P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238. - N. J. A. Sloane, Mar 03 2022
Links
- Robert Israel, Table of n, a(n) for n = 1..788
- Jim Delany, Roger Douglass, Mike Breen and Roger B. Eggleton, Problem E 3302: Averaging to Integers, The American Mathematical Monthly, Vol. 97, No. 5 (May, 1990), p. 432.
- R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission]
- Tanya Khovanova, Recursive Sequences
- Jiri Lebl and Daniel Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, arXiv:0808.0284 [math.CV], 2008-2010.
- E. Keith Lloyd, The Standard Deviation of 1, 2,..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.
- Ronald S. Tiberio, Solution to Problem E 3302 [Broken link]
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
Crossrefs
Programs
-
Magma
I:=[1,7]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
-
Maple
seq(orthopoly[T](n,7), n = 0..50); # Robert Israel, Jun 02 2015 a := n -> (-1)^(n+1)*hypergeom([n-1, -n+1], [1/2], 4): seq(simplify(a(n)), n=1..20); # Peter Luschny, Jul 26 2020
-
Mathematica
LinearRecurrence[{14,-1},{1,7},30] (* Harvey P. Dale, Dec 16 2013 *) a[n_]:=1/2((7-4 Sqrt[3])^n+(7+4 Sqrt[3])^n); Table[a[n] // Simplify,{n,0,20}] (* Gerry Martens, May 30 2015 *)
-
PARI
a(n)=if(n<0,0,subst(poltchebi(n),x,7))
-
PARI
g(n) = forstep(x=1,n,3,y=(x^2-1)/3;if(issquare(y),print1(x","))) \\ Cino Hilliard, Mar 05 2005
Formula
a(n) = 14*a(n-1) - a(n-2).
a(n) = sqrt(12*A011944(n)^2 + 1).
a(n) ~ (1/2)*(2 + sqrt(3))^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n) = T(n, 7) = (S(n, 14)-S(n-2, 14))/2 = T(2*n, 2) with S(n, x) := U(n, x/2) and T(n, x), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n, 14)=A007655(n+2).
a(n) = ((7+4*sqrt(3))^n + (7-4*sqrt(3))^n)/2.
a(n) = sqrt(48*A007655(n+1)^2 + 1).
G.f.: (1-7*x)/(1-14*x+x^2).
a(n) = cosh(2n*arcsinh(sqrt(3))). - Herbert Kociemba, Apr 24 2008
a(n) = (-1)^(n+1)*hypergeom([n-1, -n+1], [1/2], 4). - Peter Luschny, Jul 26 2020
E.g.f.: exp(7*x)*cosh(4*sqrt(3)*x). - Stefano Spezia, Dec 12 2022
Extensions
Better description from Lekraj Beedassy, Jun 27 2002
Chebyshev comments from Wolfdieter Lang, Nov 08 2002
More terms from Vincenzo Librandi, Apr 19 2015
Comments