A373620
Expansion of e.g.f. exp(x / (1 - x^2)^2).
Original entry on oeis.org
1, 1, 1, 13, 49, 481, 3841, 38221, 464353, 5368609, 82042561, 1151767981, 20242097041, 342921513793, 6705416722369, 133590317946541, 2880298682358721, 65597610230669761, 1556262483879791233, 39569880403136366029, 1030778206965403668721
Offset: 0
-
A373620 := proc(n)
add(binomial(2*n-3*k-1,k)/(n-2*k)!,k=0..floor(n/2)) ;
%*n! ;
end proc:
seq(A373620(n),n=0..80) ; # R. J. Mathar, Jun 11 2024
-
a(n) = n!*sum(k=0, n\2, binomial(2*n-3*k-1, k)/(n-2*k)!);
A373517
Expansion of e.g.f. exp(x/(1 - x^3)^(1/3)).
Original entry on oeis.org
1, 1, 1, 1, 9, 41, 121, 1401, 11761, 61489, 864081, 10597841, 81833401, 1350154521, 21715461769, 225232218121, 4267472824161, 84597818284001, 1111699778741281, 23801969674626849, 558853937533757161, 8943028907965939081, 213696639293901810201
Offset: 0
-
nmax = 25; CoefficientList[Series[E^(x/(1 - x^3)^(1/3)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
-
a(n) = n!*sum(k=0, n\3, binomial(n/3-1, k)/(n-3*k)!);
A373519
Expansion of e.g.f. exp(x/(1 - x^4)^(1/4)).
Original entry on oeis.org
1, 1, 1, 1, 1, 31, 181, 631, 1681, 60481, 687961, 4379761, 19982161, 802740511, 13848694861, 131732390791, 873339798241, 38385869907841, 894783905472241, 11506538747852641, 101612306808695521, 4824806928717603871, 142148609212891008421
Offset: 0
-
nmax = 25; CoefficientList[Series[E^(x/(1 - x^4)^(1/4)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
-
a(n) = n!*sum(k=0, n\4, binomial(n/4-1, k)/(n-4*k)!);
A373619
Expansion of e.g.f. exp(x / (1 - x^2)^(3/2)).
Original entry on oeis.org
1, 1, 1, 10, 37, 316, 2341, 21736, 237385, 2611792, 35911081, 476570656, 7654975021, 121021831360, 2196593121997, 40464132512896, 817485662059921, 17159299818547456, 382733978898335185, 8982388245979044352, 219867829220866999861, 5684505550914409716736
Offset: 0
A373668
Expansion of e.g.f. exp(x / (1 - x^2)^3).
Original entry on oeis.org
1, 1, 1, 19, 73, 901, 7921, 88831, 1261009, 15786793, 284515201, 4359416491, 88359404761, 1671036171949, 36734936604913, 831051144091351, 19848996799904161, 516144198653004241, 13522792578340917889, 391107276466207593283, 11295497154349628317801
Offset: 0
A189054
Expansion of e.g.f. exp(x/sqrt(1-4*x^2)).
Original entry on oeis.org
1, 1, 1, 13, 49, 841, 6001, 126421, 1371553, 34081489, 503678881, 14391006301, 271223253841, 8751666000793, 201326507146129, 7238365225056421, 197024810845531201, 7810072695945382561, 245787442777437613633
Offset: 0
-
CoefficientList[Series[Exp[x/Sqrt[1-4*x^2]], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 02 2013 *)
-
a(n):= n!*sum((binomial((n-2)/2,(n-k)/2)*2^(n-k-1)*((-1)^(n-k)+1))/k!, k,0,n);
-
x='x+O('x^66); /* that many terms */
egf=exp(x/sqrt(1-4*x^2)) /* = 1 +x +1/2*x^2 +13/6*x^3 +49/24*x^4 +... */
Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, Apr 22 2011 */
A373667
Expansion of e.g.f. exp(x / (1 - x^2)^(5/2)).
Original entry on oeis.org
1, 1, 1, 16, 61, 676, 5701, 60376, 798841, 9635536, 160878601, 2367914176, 44902245301, 807083463616, 16799688310861, 358223448539776, 8158048770370801, 199405713714155776, 4987832102850957841, 135848995301247809536, 3737769145322321702701
Offset: 0
Showing 1-7 of 7 results.