cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012259 Expansion of e.g.f. exp(arctanh(tan(x))).

Original entry on oeis.org

1, 1, 1, 5, 17, 121, 721, 6845, 58337, 698161, 7734241, 111973685, 1526099057, 25947503401, 419784870961, 8200346492525, 153563504618177, 3389281372287841, 72104198836466881, 1774459993676715365, 42270463533824671697, 1147649139272698443481
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Examples

			 exp(arctanh(tan(x))) = 1 + x + x^2/2! + 5*x^3/3! + 17*x^4/4! + 121*x^5/5! + ...
		

Crossrefs

Cf. A012077, A012085, A185411, A202038 (signed version).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Sqrt((1+Tan(x))/(1-Tan(x))) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    With[{nn=30}, CoefficientList[Series[Sqrt[(1+Tan[x])/(1-Tan[x])], {x, 0, nn}], x]*Range[0,nn]!] (* Vaclav Kotesovec, Oct 23 2013 *)
  • PARI
    {a(n)=local(A=1); for(i=0, n, A = exp( intformal( (A^2 + subst(A^2, x, -x))/2 +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 04 2017
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( sqrt((1+tan(x))/(1-tan(x))) )) \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    m = 30; T = taylor(sqrt((1+tan(x))/(1-tan(x))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jun 06 2019

Formula

Alternative form of e.g.f: sqrt(sec(2*x) + tan(2*x)) = 1 + x + x^2/2! + 5*x^3/3! + 17*x^4/4! + ... (where sec(x)=1/cos(x)). - Peter Bala, Jan 11 2011
a(n) = 2^n*Z(n,1/2), where Z(n,x) is the n-th zigzag polynomial as defined in A147309.
Put y = x*log(x)/4. The connection between the expansion sqrt(2/(1+x^x)) = 1 - y - y^2/2! + 5*y^3/3! + 17*y^4/4! - 121*y^5/5! ... and the present sequence is explained in the answer to Mathematics Stack Exchange Question 6939. - Peter Bala, Jul 10 2011
exp(arctanh(tan(x))) = sqrt( (1 + tan(x))/(1 - tan(x) ) ) = sqrt( tan(x+pi/4) ). - David Callan, Dec 13 2011
a(n) ~ 2^(2*n+3/2) * n^n / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Oct 23 2013
E.g.f. A(x) satisfies: A(x) = exp( Integral (A(x)^2 + A(-x)^2)/2 dx ). - Paul D. Hanna, Feb 04 2017
E.g.f. A(x) satisfies: A'(x) = A(x) * (A(x)^2 + A(-x)^2)/2. - Paul D. Hanna, Feb 04 2017