A013656 a(n) = n*(9*n-2).
0, 7, 32, 75, 136, 215, 312, 427, 560, 711, 880, 1067, 1272, 1495, 1736, 1995, 2272, 2567, 2880, 3211, 3560, 3927, 4312, 4715, 5136, 5575, 6032, 6507, 7000, 7511, 8040, 8587, 9152, 9735, 10336, 10955, 11592, 12247, 12920, 13611, 14320, 15047, 15792, 16555
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n*(9*n-2): n in [0..60]]; // G. C. Greubel, Mar 11 2022
-
Mathematica
Table[n(9n-2),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,32},50] (* Harvey P. Dale, Jul 07 2012 *)
-
PARI
a(n)=n*(9*n-2) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = a(n-1) + 18*n - 11 with n>0, a(0)=0. - Vincenzo Librandi, Nov 22 2010
a(0)=0, a(1)=7, a(2)=32, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 07 2012
From G. C. Greubel, Mar 11 2022: (Start)
G.f.: x*(7 - 11*x)/(1-x)^3.
E.g.f.: x*(7 + 9*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = -(psi(7/9)+gamma)/2 = (A354640-A001620)/2 = 0.22000753... - R. J. Mathar, Apr 22 2024
Comments