cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A013698 a(n) = binomial(3*n+2, n-1).

Original entry on oeis.org

1, 8, 55, 364, 2380, 15504, 100947, 657800, 4292145, 28048800, 183579396, 1203322288, 7898654920, 51915526432, 341643774795, 2250829575120, 14844575908435, 97997533741800, 647520696018735, 4282083008118300
Offset: 1

Views

Author

Joachim.Rosenthal(AT)nd.edu (Joachim Rosenthal), Emeric Deutsch

Keywords

Comments

Degree of variety K_{2,n}^1. Also number of double-rises (or odd-level peaks) in all generalized {(1,2),(1,-1)}-Dyck paths of length 3(n+1).
Number of dissections of a convex (2n+2)-gon by n-2 noncrossing diagonals into (2j+2)-gons, 1<=j<=n-1.
a(n) is the number of lattice paths from (0,0) to (3n+1,n-1) avoiding two consecutive up-steps. - Shanzhen Gao, Apr 20 2010

Crossrefs

Cf. A013699 (q=2), A013700 (q=3), A013701 (q=4), A013702 (q=5).

Programs

Formula

G.f.: g/((g-1)^3*(3*g-1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
a(n) = Sum_{k=0..n-1} binomial(2*n+k+2,k). - Arkadiusz Wesolowski, Apr 02 2012
D-finite with recurrence 2*(2*n+3)*(n+1)*a(n) -n*(67*n+34)*a(n-1) +30*(3*n-1)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Feb 05 2013
a(n+1) = (3*n+5)*(3*n+4)*(3*n+3)*a(n)/((2*n+5)*(2*n+4)*n). - Robert Israel, Aug 09 2015
With offset 0, the o.g.f. equals f(x)*g(x)^5, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A165817 (k = -1), A117671 (k = -2). - Peter Bala, Nov 04 2015

A013699 Degree of variety K_{2,n}^2.

Original entry on oeis.org

1, 32, 610, 9842, 147798, 2145600, 30664890, 435668420, 6186432967, 88066807556, 1258885297696, 18084694597452, 261164661944060, 3791317346771584, 55316720239735242, 810944384733610356
Offset: 1

Views

Author

Joachim.Rosenthal(AT)nd.edu (Joachim Rosenthal)

Keywords

Comments

Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 4n+4 steps with all values less than or equal to n+1 (see A080934).

Crossrefs

Cf. A013698 (q=1), A013700 (q=3), A013701 (q=4), A013702 (q=5).

Programs

  • PARI
    K(n,q=2)=(2*n+n*q+2*q)!*sum(j=0,q,((q-2*j)*(n+2)+1)/(n+j*(n+2))!/(n+1+(q-j)*(n+2))!)

A013700 Degree of variety K_{2,n}^3.

Original entry on oeis.org

1, 128, 6765, 265720, 9112264, 290926848, 8916942687, 266668876540, 7853149169635, 228982270335000, 6632994268595136, 191292945772217856, 5500214758962096400, 157819424038439232000, 4521902974531722618723
Offset: 1

Views

Author

Joachim.Rosenthal(AT)nd.edu (Joachim Rosenthal)

Keywords

Crossrefs

Cf. A013698 (q=1), A013699 (q=2), A013701 (q=4), A013702 (q=5).

Programs

  • PARI
    K(n,q=3)=(2*n+n*q+2*q)!*sum(j=0,q,((q-2*j)*(n+2)+1)/(n+j*(n+2))!/(n+1+(q-j)*(n+2))!)

Extensions

Edited by Ralf Stephan, May 13 2003

A013701 Degree of variety K_{2,n}^4.

Original entry on oeis.org

1, 512, 75025, 7174454, 562110290, 39541748736, 2610763825782, 165745451110910, 10262482704258873, 625250747214775916, 37701606156514031251, 2258713106034310399852, 134810129909509070121060
Offset: 1

Views

Author

Joachim.Rosenthal(AT)nd.edu (Joachim Rosenthal)

Keywords

Comments

Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 6n+8 steps with all values less than or equal to n+1 (see A080934).

Crossrefs

Cf. A013698 (q=1), A013699 (q=2), A013700 (q=3), A013702 (q=5).

Programs

  • PARI
    K(n,q=4)=(2*n+n*q+2*q)!*sum(j=0,q,((q-2*j)*(n+2)+1)/(n+j*(n+2))!/(n+1+(q-j)*(n+2))!)

A082635 Square array read by antidiagonals: degree of the K(2,p)^q variety.

Original entry on oeis.org

1, 2, 1, 5, 8, 1, 14, 55, 32, 1, 42, 364, 610, 128, 1, 132, 2380, 9842, 6765, 512, 1, 429, 15504, 147798, 265720, 75025, 2048, 1, 1430, 100947, 2145600, 9112264, 7174454, 832040, 8192, 1, 4862, 657800, 30664890, 290926848, 562110290, 193710244
Offset: 1

Views

Author

Ralf Stephan, May 14 2003

Keywords

Comments

Numbers are related to the dynamic pole assignment problem. "The variety K(m,p)^q can also be viewed as the parameterization of the space of rational curves of degree q of the Grassmann variety Grass(m,m+p)".
Also lim(n->inf, T(n+1,2i)/T(n,2i)) = 4^(i+1).

Examples

			Top left corner of array:
1,2,5,14,42,132,429,1430,... A000108 (Catalan numbers)
1,8,55,364,2380,15504,100947,...A013068 deg K(2,n)^1
1,32,610,9842,147798,2145600,...A013069 deg K(2,n)^2
1,128,6765,265720,9112264,... A013070 deg K(2,n)^3
1,512,75025,7174454,... A013071 deg K(2,n)^4
		

Crossrefs

Cf. A013702.
Second column is A004171(q), third is A000045(5q).
T(n, 2i) = A080934((i+1)n+2i, n+1).

Formula

degK2(p, q)=(-1)^q*(2p+pq+2q)!*sum(j=0, q, ((q-2j)(p+2)+1)/(p+j(p+2))!/(p+1+(q-j)(p+2))!).
Showing 1-5 of 5 results.