cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013731 a(n) = 2^(3*n+2).

Original entry on oeis.org

4, 32, 256, 2048, 16384, 131072, 1048576, 8388608, 67108864, 536870912, 4294967296, 34359738368, 274877906944, 2199023255552, 17592186044416, 140737488355328, 1125899906842624, 9007199254740992, 72057594037927936, 576460752303423488, 4611686018427387904
Offset: 0

Views

Author

Keywords

Comments

Starting rank of the (j-1)-Washtenaw series for the fixed ratio 2^(-j-1) (see Griess). - J. Taylor (jt_cpp(AT)yahoo.com), Apr 03 2004
1/4 + 1/32 + 1/256 + 1/2048 + ... = 2/7. - Gary W. Adamson, Aug 29 2008
Independence number of the (n+1)-Sierpinski carpet graph. - Eric W. Weisstein, Sep 06 2017
Clique covering number of the (n+1)-Sierpinski carpet graph. - Eric W. Weisstein, Apr 22 2019

Crossrefs

Cf. A092811 (same sequence with 1 prepended).

Programs

  • Magma
    [2^(3*n+2): n in [0..20]]; // Vincenzo Librandi, Jun 26 2011
    
  • Maple
    seq(2^(3*n+2),n=0..19); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    (* Start from Eric W. Weisstein, Sep 06 2017 *)
    Table[2^(3 n + 2), {n, 0, 20}]
    2^(3 Range[0, 20] + 2)
    LinearRecurrence[{8}, {4}, 20]
    CoefficientList[Series[-(4/(-1 + 8 x)), {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n)=4<<(3*n) \\ Charles R Greathouse IV, Apr 07 2012
  • Sage
    [lucas_number1(3*n, 2, 0) for n in range(1, 20)] # Zerinvary Lajos, Oct 27 2009
    

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 8*a(n-1), n > 0; a(0)=4.
G.f.: 4/(1-8x). (End)
a(n) = A198852(n) + 1. - Michel Marcus, Aug 23 2013
a(n) = A092811(n+1). - Eric W. Weisstein, Sep 06 2017
a(n) = 4*A001018(n). - R. J. Mathar, May 21 2024
E.g.f.: 4*exp(8*x). - Stefano Spezia, May 29 2024