A013731 a(n) = 2^(3*n+2).
4, 32, 256, 2048, 16384, 131072, 1048576, 8388608, 67108864, 536870912, 4294967296, 34359738368, 274877906944, 2199023255552, 17592186044416, 140737488355328, 1125899906842624, 9007199254740992, 72057594037927936, 576460752303423488, 4611686018427387904
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Robert L. Griess Jr. Pieces of 2^d: Existence and uniqueness for Barnes-Wall and Ypsilanti lattices, arXiv:math/0403480 [math.GR], Mar 28 2004. See Definition 14.21.
- Tanya Khovanova, Recursive Sequences
- Eric Weisstein's World of Mathematics, Clique Covering Number
- Eric Weisstein's World of Mathematics, Independence Number
- Eric Weisstein's World of Mathematics, Sierpinski Carpet Graph
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (8).
Programs
-
Magma
[2^(3*n+2): n in [0..20]]; // Vincenzo Librandi, Jun 26 2011
-
Maple
seq(2^(3*n+2),n=0..19); # Nathaniel Johnston, Jun 26 2011
-
Mathematica
(* Start from Eric W. Weisstein, Sep 06 2017 *) Table[2^(3 n + 2), {n, 0, 20}] 2^(3 Range[0, 20] + 2) LinearRecurrence[{8}, {4}, 20] CoefficientList[Series[-(4/(-1 + 8 x)), {x, 0, 20}], x] (* End *)
-
PARI
a(n)=4<<(3*n) \\ Charles R Greathouse IV, Apr 07 2012
-
Sage
[lucas_number1(3*n, 2, 0) for n in range(1, 20)] # Zerinvary Lajos, Oct 27 2009
Formula
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 8*a(n-1), n > 0; a(0)=4.
G.f.: 4/(1-8x). (End)
a(n) = A198852(n) + 1. - Michel Marcus, Aug 23 2013
a(n) = A092811(n+1). - Eric W. Weisstein, Sep 06 2017
a(n) = 4*A001018(n). - R. J. Mathar, May 21 2024
E.g.f.: 4*exp(8*x). - Stefano Spezia, May 29 2024
Comments