A013957 a(n) = sigma_9(n), the sum of the 9th powers of the divisors of n.
1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173, 1001953638, 2357947692, 5170140388, 10604499374, 20701400904, 38445332184, 68853957121, 118587876498, 198756808749, 322687697780, 513002215782, 794320419872, 1209627165996, 1801152661464
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- T. H. Grönwall, Some asymptotic expressions in the Theory of Numbers, Trans. Amer. Math. Soc., Vol. 14, No. 1 (1913), pp. 113-122.
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(9,n): n in [1..20]]; // Bruno Berselli, Apr 10 2013
-
Mathematica
Table[DivisorSigma[9,n],{n,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
-
PARI
a(n)=if(n<1,0,sigma(n,9))
-
Sage
[sigma(n,9)for n in range(1,21)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^9*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^8)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
n^9 + 1 <= a(n) < zeta(9)*n^9. In particular, Grönwall proves lim sup a(n)/n^9 = zeta(9) = A013667. - Charles R Greathouse IV, Dec 27 2021
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/264 = Bernoulli(10)/20. - Vaclav Kotesovec, May 07 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(9*e+9)-1)/(p^9-1).
Dirichlet g.f.: zeta(s)*zeta(s-9).
Sum_{k=1..n} a(k) = zeta(10) * n^10 / 10 + O(n^11). (End)
Comments