A013959 a(n) = sigma_11(n), the sum of the 11th powers of the divisors of n.
1, 2049, 177148, 4196353, 48828126, 362976252, 1977326744, 8594130945, 31381236757, 100048830174, 285311670612, 743375541244, 1792160394038, 4051542498456, 8649804864648, 17600780175361, 34271896307634, 64300154115093, 116490258898220, 204900053024478
Offset: 1
Crossrefs
Programs
-
Magma
[DivisorSigma(11, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
-
Mathematica
Table[DivisorSigma[11, n], {n, 30}] (* Vincenzo Librandi, Sep 10 2016 *)
-
PARI
a(n)=sigma(n,11) \\ Charles R Greathouse IV, Apr 28 2011
-
PARI
my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^11*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
-
Python
from sympy import divisor_sigma def A013959(n): return divisor_sigma(n,11) # Chai Wah Wu, Nov 17 2022
-
Sage
[sigma(n,11)for n in range(1,18)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^11*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-11)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(11*e+11)-1)/(p^11-1).
Sum_{k=1..n} a(k) = zeta(12) * n^12 / 12 + O(n^13). (End)
Comments