A013960 a(n) = sigma_12(n), the sum of the 12th powers of the divisors of n.
1, 4097, 531442, 16781313, 244140626, 2177317874, 13841287202, 68736258049, 282430067923, 1000244144722, 3138428376722, 8918294543346, 23298085122482, 56707753666594, 129746582562692, 281543712968705, 582622237229762, 1157115988280531, 2213314919066162
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(12, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
-
Mathematica
DivisorSigma[12,Range[20]] (* Harvey P. Dale, Jan 28 2015 *)
-
PARI
my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^12*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
-
PARI
a(n) = sigma(n, 12); \\ Amiram Eldar, Oct 29 2023
-
Sage
[sigma(n,12) for n in range(1,17)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^12*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-12)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(12*e+12)-1)/(p^12-1).
Sum_{k=1..n} a(k) = zeta(13) * n^13 / 13 + O(n^14). (End)
Comments