A013962 a(n) = sigma_14(n), the sum of the 14th powers of the divisors of n.
1, 16385, 4782970, 268451841, 6103515626, 78368963450, 678223072850, 4398314962945, 22876797237931, 100006103532010, 379749833583242, 1283997101947770, 3937376385699290, 11112685048647250, 29192932133689220, 72061992352890881, 168377826559400930
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to sigma(n).
Programs
-
Magma
[DivisorSigma(14, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
-
Mathematica
DivisorSigma[14,Range[20]] (* Harvey P. Dale, Mar 10 2013 *)
-
PARI
my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^14*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
-
PARI
a(n) = sigma(n, 14); \\ Amiram Eldar, Oct 29 2023
-
Sage
[sigma(n,14) for n in range(1,16)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^14*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-14)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(14*e+14)-1)/(p^14-1).
Sum_{k=1..n} a(k) = zeta(15) * n^15 / 15 + O(n^16). (End)
Comments