A013970 a(n) = sigma_22(n), the sum of the 22nd powers of the divisors of n.
1, 4194305, 31381059610, 17592190238721, 2384185791015626, 131621735227521050, 3909821048582988050, 73786993887028445185, 984770902214992292491, 10000002384185795209930, 81402749386839761113322, 552061570551763831158810, 3211838877954855105157370
Offset: 1
Links
Programs
-
Magma
[DivisorSigma(22,n): n in [1..50]]; // G. C. Greubel, Nov 03 2018
-
Mathematica
lst={};Do[AppendTo[lst,DivisorSigma[22,n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *) a[ n_] := DivisorSigma[ 22, n]; (* Michael Somos, Dec 19 2016 *)
-
PARI
vector(50, n, sigma(n,22)) \\ G. C. Greubel, Nov 03 2018
-
Sage
[sigma(n,22)for n in range(1,12)] # Zerinvary Lajos, Jun 04 2009
Formula
G.f.: Sum_{k>=1} k^22*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(22*e+22)-1)/(p^22-1).
Dirichlet g.f.: zeta(s)*zeta(s-22).
Sum_{k=1..n} a(k) = zeta(23) * n^23 / 23 + O(n^24). (End)
Comments