cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A109544 Expansion of (1 + x - x^3 - 2*x^4)/(1 - x^2 - x^3 - x^4 - x^5).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 4, 7, 10, 16, 25, 37, 58, 88, 136, 208, 319, 490, 751, 1153, 1768, 2713, 4162, 6385, 9796, 15028, 23056, 35371, 54265, 83251, 127720, 195943, 300607, 461179, 707521, 1085449, 1665250, 2554756, 3919399, 6012976, 9224854, 14152381
Offset: 0

Views

Author

Roger L. Bagula, Jun 20 2005

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-x^3-2*x^4)/(1-x^2-x^3-x^4-x^5))); // G. C. Greubel, Nov 03 2018
  • Mathematica
    LinearRecurrence[{0, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, 50]
    CoefficientList[Series[(1+x-x^3-2x^4)/(1-x^2-x^3-x^4-x^5),{x,0,50}],x] (* Harvey P. Dale, Oct 24 2021 *)
  • Maxima
    makelist(ratcoef(taylor((1 + x - x^3 - 2*x^4)/(1 - x^2 - x^3 - x^4 - x^5), x, 0, n), x, n), n, 0, 50); /* Franck Maminirina Ramaharo, Oct 31 2018 */
    
  • PARI
    x='x+O('x^50); Vec((1+x-x^3-2*x^4)/(1-x^2-x^3-x^4-x^5)) \\ G. C. Greubel, Nov 03 2018
    

Formula

a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5).

A072465 A Fibonacci-like model in which each pair of rabbits dies after the birth of their 4th litter: a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 11, 17, 26, 40, 61, 94, 144, 221, 339, 520, 798, 1224, 1878, 2881, 4420, 6781, 10403, 15960, 24485, 37564, 57629, 88412, 135638, 208090, 319243, 489769, 751383, 1152740, 1768485, 2713135, 4162377, 6385743, 9796737
Offset: 0

Views

Author

Leonardo Fonseca (fonleo(AT)fisica.ufmg.br), Jun 19 2002

Keywords

Comments

Lim_{n->infinity} a(n+1)/a(n) = 1.534157744914.... is the root of x^5 = x^3 + x^2 + x + 1. - Benoit Cloitre, Jun 22 2002
A pair of rabbits born in month n begins to procreate in month n + 2, continues to procreate until month n + 5, and dies at the end of this month (each pair therefore gives birth to 5-2+1 = 4 pairs); the first pair is born in month 1. - Robert FERREOL, Oct 05 2017

Crossrefs

Cf. A013982.

Programs

  • Maple
    a:=proc(n,p,q) option remember:
    if n<=p then 1
    elif n<=q then a(n-1,p,q)+a(n-p,p,q)
    else add(a(n-k,p,q),k=p..q) fi end:
    seq(a(n,2,5),n=0..100); # Robert FERREOL, Oct 05 2017
  • Mathematica
    CoefficientList[ Series[(1 + x)/(1 - x^2 - x^3 - x^4 - x^5), {x, 0, 40}], x]
    LinearRecurrence[{0,1,1,1,1},{1,1,1,2,3},40] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-x^2-x^3-x^4-x^5)) \\ Altug Alkan, Oct 06 2017

Formula

a(n) = a(n-1) + a(n-2) - a(n-6);
G.f.: = (1 + x)/(1 - x^2 - x^3 - x^4 - x^5).
a(n) = A013982(n) + A013982(n-1). - R. J. Mathar, Nov 29 2011
Showing 1-2 of 2 results.