A014025 Expansion of the inverse of the 16th cyclotomic polynomial.
1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, -1).
- Index to sequences related to inverse of cyclotomic polynomials
Programs
-
Magma
&cat[[1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0]: n in [0..8]]; // Vincenzo Librandi, Apr 03 2014
-
Maple
with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);
-
Mathematica
CoefficientList[Series[1/Cyclotomic[16, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 03 2014 *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, -1},{1, 0, 0, 0, 0, 0, 0, 0},99] (* Ray Chandler, Sep 15 2015 *)
-
PARI
Vec(1/polcyclo(16)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014
Formula
G.f.: 1/(1 + x^8). - Klaus Brockhaus, May 17 2011
a(n) = -a(n-8).
abs(a(n)) = floor(1/2*cos(n*Pi/4)+1/2). - Gary Detlefs, May 16 2011
a(n)=(floor((n+8)/8)-floor((n+7)/8))*(-1)^floor(n/8). |a(n)| is the characteristic function of numbers that are multiples of 8. |a(n)|=floor(n/8)-floor((n-1)/8). - Boris Putievskiy, May 08 2013
Comments