cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A014058 a(n) = ceiling((n+1/n)^n).

Original entry on oeis.org

2, 7, 38, 327, 3803, 54993, 948646, 18992711, 432655359, 11046221255, 312347907387, 9688154906658, 327018557066165, 11932588574197764, 468012768020438831, 19634066192684343923, 877272066059957914874
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A014056 a(n) = round( (n + 1/n)^n ).

Original entry on oeis.org

2, 6, 37, 326, 3802, 54992, 948645, 18992711, 432655358, 11046221254, 312347907386, 9688154906658, 327018557066165, 11932588574197763, 468012768020438830, 19634066192684343923, 877272066059957914874
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A197602 Floor((n+1/n)^3).

Original entry on oeis.org

8, 15, 37, 76, 140, 234, 364, 536, 756, 1030, 1364, 1764, 2236, 2786, 3420, 4144, 4964, 5886, 6916, 8060, 9324, 10714, 12236, 13896, 15700, 17654, 19764, 22036, 24476, 27090, 29884, 32864, 36036, 39406, 42980, 46764, 50764, 54986, 59436, 64120, 69044, 74214, 79636, 85316, 91260, 97474, 103964, 110736, 117796, 125150
Offset: 1

Views

Author

Vincenzo Librandi, Oct 17 2011

Keywords

Crossrefs

Programs

Formula

From Bruno Berselli, Oct 17 2011: (Start)
G.f.: x*(8-17*x+25*x^2-14*x^3+6*x^4-3*x^5+x^6)/(1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>7.
a(n) = A079908(n) for n>3. (End)

A197603 a(n) = floor((n+1/n)^4).

Original entry on oeis.org

16, 39, 123, 326, 731, 1446, 2603, 4358, 6891, 10406, 15131, 21318, 29243, 39206, 51531, 66566, 84683, 106278, 131771, 161606, 196251, 236198, 281963, 334086, 393131, 459686, 534363, 617798, 710651, 813606, 927371, 1052678, 1190283, 1340966, 1505531, 1684806, 1879643, 2090918, 2319531, 2566406, 2832491, 3118758
Offset: 1

Views

Author

Vincenzo Librandi, Oct 17 2011

Keywords

Crossrefs

Programs

  • Magma
    [Floor((n+1/n)^4): n in [1..60]];
    
  • Mathematica
    Table[Floor[(n+1/n)^4],{n,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{16,39,123,326,731,1446,2603},50] (* Harvey P. Dale, Jun 03 2015 *)
  • PARI
    a(n)=floor((n+1/n)^4) \\ Charles R Greathouse IV, Oct 07 2015

Formula

From Bruno Berselli, Oct 17 2011: (Start)
G.f.: x*(16-41*x+88*x^2-59*x^3+21*x^4-x^6)/(1-x)^5.
a(n) = (n^2+2)^2+2 for n>2, a(1)=16, a(2)=39.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n=6 and n>7.
a(n) = A010000(A010000(n)) for n>2. (End)

A197604 a(n) = floor((n+1/n)^5).

Original entry on oeis.org

32, 97, 411, 1386, 3802, 8917, 18593, 35409, 62785, 105101, 167816, 257592, 382408, 551684, 776400, 1069216, 1444592, 1918908, 2510584, 3240200, 4130616, 5207092, 6497408, 8031984, 9844000, 11969516, 14447592, 17320408, 20633384, 24435300, 28778416, 33718592, 39315408, 45632284, 52736600, 60699816, 69597592, 79509908
Offset: 1

Views

Author

Vincenzo Librandi, Oct 17 2011

Keywords

Crossrefs

Cf. A014052.

Programs

  • Magma
    [Floor((n+1/n)^5): n in [1..60]]
    
  • Mathematica
    Join[{32,97,411,1386,3802,8917,18593,35409,62785,105101},LinearRecurrence[{6,-15,20,-15,6,-1},{167816,257592,382408,551684,776400,1069216},30]] (* Harvey P. Dale, Jan 16 2015 *)
  • PARI
    a(n)=floor((n+1/n)^5) \\ Charles R Greathouse IV, Oct 27 2011

Formula

From Bruno Berselli, Oct 27 2011: (Start)
G.f.: x*(32-95*x+309*x^2-265*x^3+191*x^4-62*x^5+16*x^6-13*x^7+11*x^8-5*x^9+5*x^11-10*x^12+10*x^13-5*x^14+x^15)/(1-x)^6.
a(n) = n*(n^4+5*n^2+10) + A033330(n) for n>1.
a(n) = A197904(n) - 1 for n>1. (End)

A197595 Floor((6n+1/n)^n).

Original entry on oeis.org

7, 156, 6162, 345817, 25120872, 2237952687, 236084694122, 28771727614749, 3977205817386552, 614815375624938276, 105089416995538138497, 19679693805738843682350, 4006775128162674717660621, 881207085092349552894218729, 208190711541113653367733416163
Offset: 1

Views

Author

Vincenzo Librandi, Oct 17 2011

Keywords

Crossrefs

Cf. A014052.

Programs

  • Magma
    [Floor((6*n+1/n)^n): n in [1..20]];
    
  • Mathematica
    Table[Floor[(6n+1/n)^n],{n,20}] (* Harvey P. Dale, Dec 29 2024 *)
  • PARI
    a(n)=floor((6*n+1/n)^n) \\ Charles R Greathouse IV, Dec 27 2011

A197324 a(n) = floor((4*n+1/n)^n).

Original entry on oeis.org

5, 72, 1876, 69729, 3363232, 199205126, 13982257728, 1134344816184, 104416147080711, 10750872867074586, 1224163955433850943, 152733676280699540998, 20719969553916698313304, 3036565789908881887393113, 478082645334119488823777214, 80475210949356295594385157620
Offset: 1

Views

Author

Vincenzo Librandi, Oct 17 2011

Keywords

Crossrefs

Cf. A014052.

Programs

  • Magma
    [Floor((4*n+1/n)^n): n in [1..20]]
    
  • Mathematica
    Table[Floor[(4n+1/n)^n],{n,20}] (* Harvey P. Dale, Mar 23 2012 *)
  • PARI
    a(n)=floor((4*n+1/n)^n) \\ Charles R Greathouse IV, Dec 27 2011

A197325 Floor((5n+1/n)^n).

Original entry on oeis.org

6, 110, 3605, 168151, 10162550, 753640010, 66200225626, 6719243243859, 773662803646264, 99627047203913814, 14186632841753756405, 2213340465298424454702, 375449162169269152689331, 68797650004483898373052060, 13542753444466024362689788808
Offset: 1

Views

Author

Vincenzo Librandi, Oct 17 2011

Keywords

Crossrefs

Cf. A014052.

Programs

  • Magma
    [Floor((5*n+1/n)^n): n in [1..20]];
    
  • Mathematica
    Floor[Table[(5n+1/n)^n,{n,20}]] (* Harvey P. Dale, Sep 15 2023 *)
  • PARI
    a(n)=floor((5*n+1/n)^n) \\ Charles R Greathouse IV, Dec 27 2011

A197596 a(n) = Floor((7n+1/n)^n).

Original entry on oeis.org

8, 210, 9709, 636903, 54039748, 5621026396, 692186010834, 98457959756722, 15883727818630151, 2865366503771469410, 571524481184700575469, 124887520213444076248619, 29669385469799155774434098, 7613687050766411443598268998
Offset: 1

Views

Author

Vincenzo Librandi, Oct 17 2011

Keywords

Crossrefs

Cf. A014052.

Programs

A197597 Floor((8n+1/n)^n).

Original entry on oeis.org

9, 272, 14408, 1081730, 104985728, 12487616538, 1758172862979, 285903205720512, 52725376090628155, 10872393464815690143, 2478802987043990078456, 619122710473385614426209, 168115507427305189329095427, 49309285630177314887251611600
Offset: 1

Views

Author

Vincenzo Librandi, Oct 17 2011

Keywords

Crossrefs

Cf. A014052.

Programs

  • Magma
    [Floor((8*n+1/n)^n): n in [1..20]]
    
  • Mathematica
    Table[Floor[(8 n + 1/n)^n], {n, 20}] (* Harvey P. Dale, Dec 25 2017 *)
  • PARI
    a(n)=floor((8*n+1/n)^n) \\ Charles R Greathouse IV, Dec 27 2011
Showing 1-10 of 24 results. Next