cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A014052 a(n) = floor((n+1/n)^n).

Original entry on oeis.org

2, 6, 37, 326, 3802, 54992, 948645, 18992710, 432655358, 11046221254, 312347907386, 9688154906657, 327018557066164, 11932588574197763, 468012768020438830, 19634066192684343922, 877272066059957914873, 41590621075366029857195, 2085184183314142201403129
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Crossrefs

Programs

A014056 a(n) = round( (n + 1/n)^n ).

Original entry on oeis.org

2, 6, 37, 326, 3802, 54992, 948645, 18992711, 432655358, 11046221254, 312347907386, 9688154906658, 327018557066165, 11932588574197763, 468012768020438830, 19634066192684343923, 877272066059957914874
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A197716 a(n) = ceiling((2n+1/n)^n).

Original entry on oeis.org

3, 21, 255, 4633, 110409, 3243618, 113177497, 4570858600, 209655304353, 10763674952098, 611433842280388, 38071427445729201, 2578294348444597267, 188670154792420320215, 14834716200104606205408, 1247263229999781126495328, 111661618863544248806155260
Offset: 1

Views

Author

Vincenzo Librandi, Oct 18 2011

Keywords

Crossrefs

Cf. A014058.

Programs

  • Magma
    [Ceiling((2*n+1/n)^n): n in [1..20]]
    
  • Mathematica
    Array[Ceiling[(2*# + 1/#)^#] &, 20] (* Paolo Xausa, Feb 04 2025 *)
  • PARI
    a(n)=ceil((2*n+1/n)^n) \\ Charles R Greathouse IV, Nov 21 2011

A197717 a(n) = ceiling((3n+1/n)^n).

Original entry on oeis.org

4, 43, 814, 22519, 811369, 35946076, 1888624972, 114746269758, 7912720985080, 610470884770407, 52094956940751711, 4871691779130290167, 495409898474358881327, 54427906182810588386674, 6424384909407981686846706, 810777549111969648699638307, 108944087230453697240059783284
Offset: 1

Views

Author

Vincenzo Librandi, Oct 18 2011

Keywords

Crossrefs

Cf. A014058.

Programs

  • Magma
    [Ceiling((3*n+1/n)^n): n in [1..20]]
    
  • Mathematica
    Table[Ceiling[(3n+1/n)^n],{n,20}] (* Harvey P. Dale, Mar 04 2023 *)
  • PARI
    a(n)=ceil((3*n+1/n)^n) \\ Charles R Greathouse IV, Nov 21 2011

A197764 Ceiling((4n+1/n)^n).

Original entry on oeis.org

5, 73, 1877, 69730, 3363233, 199205127, 13982257729, 1134344816185, 104416147080712, 10750872867074587, 1224163955433850944, 152733676280699540999, 20719969553916698313305, 3036565789908881887393114, 478082645334119488823777215, 80475210949356295594385157621
Offset: 1

Views

Author

Vincenzo Librandi, Oct 18 2011

Keywords

Crossrefs

Cf. A014058.

Programs

A197765 a(n) = ceiling((5n+1/n)^n).

Original entry on oeis.org

6, 111, 3606, 168152, 10162551, 753640011, 66200225627, 6719243243860, 773662803646265, 99627047203913815, 14186632841753756406, 2213340465298424454703, 375449162169269152689332, 68797650004483898373052061, 13542753444466024362689788809
Offset: 1

Views

Author

Vincenzo Librandi, Oct 18 2011

Keywords

Crossrefs

Cf. A014058.

Programs

  • Magma
    [Ceiling((5*n+1/n)^n): n in [1..20]]
    
  • Mathematica
    Table[Ceiling[(5n+1/n)^n],{n,20}] (* Harvey P. Dale, Nov 16 2021 *)
  • PARI
    a(n)=ceil((5*n+1/n)^n) \\ Charles R Greathouse IV, Nov 21 2011

A197766 Ceiling((6n+1/n)^n).

Original entry on oeis.org

7, 157, 6163, 345818, 25120873, 2237952688, 236084694123, 28771727614750, 3977205817386553, 614815375624938277, 105089416995538138498, 19679693805738843682351, 4006775128162674717660622, 881207085092349552894218730, 208190711541113653367733416164
Offset: 1

Views

Author

Vincenzo Librandi, Oct 18 2011

Keywords

Crossrefs

Cf. A014058.

Programs

  • Magma
    [Ceiling((6*n+1/n)^n): n in [1..20]]
    
  • Mathematica
    Table[Ceiling[(6n+1/n)^n],{n,20}] (* Harvey P. Dale, Jun 06 2020 *)
  • PARI
    a(n)=ceil((6*n+1/n)^n) \\ Charles R Greathouse IV, Nov 21 2011

A197910 Ceiling((n+1/2)^n).

Original entry on oeis.org

2, 7, 43, 411, 5033, 75419, 1334839, 27249053, 630249410, 16288946268, 465239139607, 14551915228367, 494696673952512, 18161513224841276, 716102966059713316, 30181658957863752410, 1354087807629298185930, 64430442087414935111822, 3240840189607299761533536
Offset: 1

Views

Author

Vincenzo Librandi, Oct 19 2011

Keywords

Crossrefs

Cf. A014058.

Programs

  • Magma
    [Ceiling((n+1/2)^n): n in [1..20]]
    
  • Mathematica
    Table[Ceiling[(n+1/2)^n],{n,20}] (* Harvey P. Dale, Sep 05 2015 *)
  • PARI
    a(n)=ceil((n+1/2)^n) \\ Charles R Greathouse IV, Nov 21 2011

A197904 a(n) = ceiling((n+1/n)^5).

Original entry on oeis.org

32, 98, 412, 1387, 3803, 8918, 18594, 35410, 62786, 105102, 167817, 257593, 382409, 551685, 776401, 1069217, 1444593, 1918909, 2510585, 3240201, 4130617, 5207093, 6497409, 8031985, 9844001, 11969517, 14447593, 17320409, 20633385, 24435301, 28778417, 33718593
Offset: 1

Views

Author

Vincenzo Librandi, Oct 19 2011

Keywords

Crossrefs

Cf. A014058.

Programs

  • Magma
    [Ceiling((n+1/n)^5): n in [1..50]]
    
  • Maple
    A197904:=n->ceil((n+1/n)^5): seq(A197904(n), n=1..40); # Wesley Ivan Hurt, Apr 23 2017
  • Mathematica
    Table[Ceiling[(n+1/n)^5],{n,50}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{32,98,412,1387,3803,8918,18594,35410,62786,105102,167817,257593,382409,551685,776401,1069217},40] (* Harvey P. Dale, Jul 10 2021 *)
  • PARI
    a(n)=ceil((n+1/n)^5) \\ Charles R Greathouse IV, Nov 21 2011

Formula

a(n) = n^5 + 5n^3 + 10n for n > 10. [Charles R Greathouse IV, Nov 21 2011]
G.f.: (167817 - 749309 x + 1354106 x^2 - 1235214 x^3 + 567821 x^4 -
105101 x^5)/(-1 + x)^6 - Harvey P. Dale, Jul 10 2021

A197907 Ceiling((n+1/n)^8).

Original entry on oeis.org

256, 1526, 15242, 106442, 534598, 2091240, 6776037, 18992711, 47486564, 108285671, 228948164, 454458311, 855154436, 1537112039, 2655445796, 4431034439, 7171212836, 11295015911, 17363599364, 26116502471, 38514458564, 55789499111, 79503137636, 111613460039
Offset: 1

Views

Author

Vincenzo Librandi, Oct 19 2011

Keywords

Crossrefs

Cf. A014058.

Programs

  • Magma
    [Ceiling((n+1/n)^8): n in [1..40]]
    
  • Mathematica
    Table[Ceiling[(n+1/n)^8],{n,30}] (* Harvey P. Dale, Jul 10 2013 *)
  • PARI
    a(n)=ceil((n+1/n)^8) \\ Charles R Greathouse IV, Dec 27 2011

Formula

For n > 7, a(n) = n^8 + 8n^6 + 28n^4 + 56n^2 + 70. [Charles R Greathouse IV, Dec 27 2011]
Showing 1-10 of 24 results. Next