cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014081 a(n) is the number of occurrences of '11' in the binary expansion of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 1, 2, 2, 2, 3, 4, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 3, 3, 3, 4, 5, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 1
Offset: 0

Views

Author

Keywords

Comments

a(n) takes the value k for the first time at n = 2^(k+1)-1. Cf. A000225. - Robert G. Wilson v, Apr 02 2009
a(n) = A213629(n,3) for n > 2. - Reinhard Zumkeller, Jun 17 2012

Examples

			The binary expansion of 15 is 1111, which contains three occurrences of 11, so a(15)=3.
		

Crossrefs

First differences give A245194.
A245195 gives 2^a(n).

Programs

  • Haskell
    import Data.Bits ((.&.))
    a014081 n = a000120 (n .&. div n 2)  -- Reinhard Zumkeller, Jan 23 2012
    
  • Maple
    # To count occurrences of 11..1 (k times) in binary expansion of v:
    cn := proc(v, k) local n, s, nn, i, j, som, kk;
    som := 0;
    kk := convert(cat(seq(1, j = 1 .. k)),string);
    n := convert(v, binary);
    s := convert(n, string);
    nn := length(s);
    for i to nn - k + 1 do
    if substring(s, i .. i + k - 1) = kk then som := som + 1 fi od;
    som; end; # This program no longer worked. Corrected by N. J. A. Sloane, Apr 06 2014.
    [seq(cn(n,2),n=0..300)];
    # Alternative:
    A014081 := proc(n) option remember;
      if n mod 4 <= 1 then procname(floor(n/4))
    elif n mod 4 = 2 then procname(n/2)
    else 1 + procname((n-1)/2)
    fi
    end proc:
    A014081(0):= 0:
    map(A014081, [$0..1000]); # Robert Israel, Sep 04 2015
  • Mathematica
    f[n_] := Count[ Partition[ IntegerDigits[n, 2], 2, 1], {1, 1}]; Table[ f@n, {n, 0, 104}] (* Robert G. Wilson v, Apr 02 2009 *)
    Table[SequenceCount[IntegerDigits[n,2],{1,1},Overlaps->True],{n,0,120}] (* Harvey P. Dale, Jun 06 2022 *)
  • PARI
    A014081(n)=sum(i=0,#binary(n)-2,bitand(n>>i,3)==3)  \\ M. F. Hasler, Jun 06 2012
    
  • PARI
    a(n) = hammingweight(bitand(n, n>>1)) ;
    vector(105, i, a(i-1))  \\ Gheorghe Coserea, Aug 30 2015
    
  • Python
    def a(n): return sum([((n>>i)&3==3) for i in range(len(bin(n)[2:]) - 1)]) # Indranil Ghosh, Jun 03 2017
    
  • Python
    from re import split
    def A014081(n): return sum(len(d)-1 for d in split('0+', bin(n)[2:]) if d != '') # Chai Wah Wu, Feb 04 2022

Formula

a(4n) = a(4n+1) = a(n), a(4n+2) = a(2n+1), a(4n+3) = a(2n+1) + 1. - Ralf Stephan, Aug 21 2003
G.f.: (1/(1-x)) * Sum_{k>=0} t^3/((1+t)*(1+t^2)), where t = x^(2^k). - Ralf Stephan, Sep 10 2003
a(n) = A000120(n) - A069010(n). - Ralf Stephan, Sep 10 2003
Sum_{n>=1} A014081(n)/(n*(n+1)) = A100046 (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021