cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014097 a(n) = a(n-1)+a(n-4).

Original entry on oeis.org

1, 1, 1, 5, 6, 7, 8, 13, 19, 26, 34, 47, 66, 92, 126, 173, 239, 331, 457, 630, 869, 1200, 1657, 2287, 3156, 4356, 6013, 8300, 11456, 15812, 21825, 30125, 41581, 57393, 79218, 109343, 150924, 208317, 287535
Offset: 1

Views

Author

Keywords

Comments

Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 4 sites wide.
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m+1. The generating function is (x+m*x^m)/(1-x-x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1},{1,1,1,5},40] (* Harvey P. Dale, Mar 06 2016 *)
  • Maxima
    a(n):=sum(binomial(n-3*j,n-4*j)*n/(n-3*j),j,0,(n-1)/3); /* Vladimir Kruchinin, Mar 25 2016 */
    
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,0,1]^(n-1)*[1;1;1;5])[1,1] \\ Charles R Greathouse IV, Sep 09 2016

Formula

G.f.: -x*(1+4*x^3)/(-1+x+x^4). a(n)= 4*A003269(n)-3*A003269(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{j=0..(n-1)/3}(binomial(n-3*j,n-4*j)*n/(n-3*j)). - Vladimir Kruchinin, Mar 25 2016
From Greg Dresden, Aug 23 2019: (Start)
a(n) = r1^n + r2^n + r3^n + r4^n, where {r1,r2,r3,r4} are the four roots of x^4-x^3-1=0, see A086106, A230151.
a(n) = round(r^n) for n>21 and r the positive real root of x^4-x^3-1.
(End)

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000