cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014144 Apply partial sum operator twice to factorials.

Original entry on oeis.org

0, 1, 3, 7, 17, 51, 205, 1079, 6993, 53227, 462341, 4500255, 48454969, 571411283, 7321388397, 101249656711, 1502852293025, 23827244817339, 401839065437653, 7182224591785967, 135607710526966281, 2696935204638786595, 56349204870460046909, 1234002202313888987223
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A137948 starting with offset 1. - Gary W. Adamson, Feb 28 2008
If s(n) is a sequence defined as s(0)=a, s(1)=b, s(n) = n*(s(n-1) - s(n-2)), n>1, then s(n) = n*b - (a(n)-1)*a. - Gary Detlefs, Feb 23 2011

Crossrefs

Programs

  • Magma
    [(k-1)*(&+[Factorial(j): j in [0..k-1]]) - Factorial(k) + 1: k in [1..25]]; // G. C. Greubel, Sep 03 2018
  • Maple
    b:= proc(n) option remember; `if`(n<0, [0$2],
          (q-> (f-> [f[2]+q, q]+f)(b(n-1)))(n!))
        end:
    a:= n-> b(n-1)[1]:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 13 2022
  • Mathematica
    Join[{0}, Accumulate@ Accumulate@ (Range[0, 19]!)] (* Robert G. Wilson v *)
    Join[{0},Nest[Accumulate[#]&,Range[0,25]!,2]] (* Harvey P. Dale, May 12 2025 *)
  • PARI
    a(n)=(n-1)*round(n!/exp(1))-n!+1 \\ Charles R Greathouse IV, Feb 24 2011
    

Formula

a(n) = (n-1) * !n - n! + 1, !n = Sum_{k=0..n-1} k!. - Joe Keane (jgk(AT)jgk.org)
a(n) = convolution(A000142, A001477). - Peter Luschny, Jan 21 2012
G.f.: x*G(0)/(1-x)^2, where G(k)= 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013