cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014148 a(n) = Sum_{m=1..n} Sum_{k=1..m} prime(k).

Original entry on oeis.org

2, 7, 17, 34, 62, 103, 161, 238, 338, 467, 627, 824, 1062, 1343, 1671, 2052, 2492, 2993, 3561, 4200, 4912, 5703, 6577, 7540, 8600, 9761, 11025, 12396, 13876, 15469, 17189, 19040, 21028, 23155, 25431, 27858, 30442, 33189, 36103, 39190, 42456, 45903
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Apply partial sum operator twice to sequence of primes.
Numbers n such that a(n) is prime are listed in A122381(n) = {1, 2, 3, 6, 10, 23, 31, 46, 55, 58, 66, 70, 82, 91, 118, 131, 151, 163, 182, 187, 198, 199, ...}. Corresponding primes a(n) = a( A122381(n) ) = A122382(n) = {2, 7, 17, 103, 467, 6577, 17189, 61627, 109919, 130531, 198109, 239579, 399557, 559313, ...}. - Alexander Adamchuk, Aug 30 2006
Row 2 in A254858. - Reinhard Zumkeller, Feb 08 2015
Partial sums of A007504, n>=1. - Omar E. Pol, Nov 23 2016

Crossrefs

Programs

  • Haskell
    a014148 n = a014148_list !! (n-1)
    a014148_list = (iterate (scanl1 (+)) a000040_list) !! 2
    -- Reinhard Zumkeller, Feb 08 2015
  • Maple
    b:= proc(n) option remember; `if`(n<1, [0$2],
          (p-> p+[ithprime(n), p[1]])(b(n-1)))
        end:
    a:= n-> b(n+1)[2]:
    seq(a(n), n=1..42);  # Alois P. Heinz, Oct 07 2021
  • Mathematica
    Table[Sum[Sum[Prime[k],{k,1,m}],{m,1,n}],{n,1,100}] (* Alexander Adamchuk, Aug 30 2006 *)
    Accumulate[Accumulate[Prime[Range[50]]]] (* Harvey P. Dale, Dec 29 2011 *)

Formula

Convolution of the primes with the positive integers: Sum_{k=1..n} (n-k+1)*prime(k). - David Scambler, Oct 08 2006

Extensions

More terms from Alexander Adamchuk, Aug 30 2006
Name changed by Wesley Ivan Hurt, Oct 04 2021