cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014301 Number of internal nodes of even outdegree in all ordered rooted trees with n edges.

Original entry on oeis.org

0, 1, 3, 11, 40, 148, 553, 2083, 7896, 30086, 115126, 442118, 1703052, 6577474, 25461493, 98759971, 383751472, 1493506534, 5820778858, 22714926826, 88745372992, 347087585824, 1358789148058, 5324148664846, 20878676356240, 81937643449468, 321786401450268
Offset: 1

Views

Author

Keywords

Comments

Number of protected vertices in all ordered rooted trees with n edges. A protected vertex in an ordered tree is a vertex at least 2 edges away from its leaf descendants. - Emeric Deutsch, Aug 20 2008
1,3,11,... gives the diagonal sums of A111418. Hankel transform of a(n) is A128834. Hankel transform of a(n+1) is A187340. - Paul Barry, Mar 08 2011
a(n) = A035317(2*n-1,n-1) for n > 0. - Reinhard Zumkeller, Jul 19 2012
Apparently the number of peaks in all Dyck paths of semilength n+1 that are the same height as the preceding peak. - David Scambler, Apr 22 2013
Define an infinite triangle by T(n,0)=A001045(n) (the first column) and T(r,c) = Sum_{k=c-1..r} T(k,c-1) (the sum of all the terms in the preceding column down to row r). Then T(n,n)=a(n+1). The triangle is 0; 1,1; 1,2,3; 3,5,8,11; 5,10,18,29,40; 11,21,39,68,108,148;... Example: T(5,2)=39=the sum of the terms in column 1 from T(1,1) to T(5,1), namely, 1+2+5+10+21. - J. M. Bergot, May 17 2013
Also for n>=1 the number of unimodal functions f:[n]->[n] with f(1)<>1 and f(i)<>f(i+1). a(4) = 11: [2,3,2,1], [2,3,4,1], [2,3,4,2], [2,3,4,3], [2,4,2,1], [2,4,3,1], [2,4,3,2], [3,4,2,1], [3,4,3,1], [3,4,3,2], [4,3,2,1]. - Alois P. Heinz, May 23 2013

Crossrefs

Programs

  • Magma
    [(1/2)*(&+[(-1)^(n-k)*Binomial(n+k-1,k): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Jan 15 2018
    
  • Mathematica
    Rest[CoefficientList[Series[(1-2*x-Sqrt[1-4*x])/(3*Sqrt[1-4*x]-1+4*x), {x, 0, 50}], x]] (* G. C. Greubel, Jan 15 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(3*sqrt(1-4*x)-1+4*x)) \\ G. C. Greubel, Jan 15 2018
    
  • Python
    from itertools import count, islice
    def A014301_gen(): # generator of terms
        yield from (0,1)
        a, b, c = 0, 3, 1
        for n in count(1):
            yield ((b:=b*((n<<1)+3<<1)//(n+2))-(a:=(c:=c*((n<<2)+2)//(n+2))-a>>1))//3
    A014301_list = list(islice(A014301_gen(),20)) # Chai Wah Wu, Apr 27 2023

Formula

a(n) = binomial(2*n-1, n)/3 - A000957(n)/3;
a(n) = (1/2)*Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k). - Vladeta Jovovic, Aug 28 2002
From Emeric Deutsch, Jan 26 2004: (Start)
G.f.: (1-2*z-sqrt(1-4*z))/(3*sqrt(1-4*z)-1+4*z).
a(n) = [A026641(n) - A026641(n-1)]/3 for n>1. (End)
a(n) = (1/2)*Sum_{j=0..floor(n/2)} binomial(2n-2j-2, n-2).
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n+k,k-1). - Paul Barry, Jul 18 2006
D-finite with recurrence: 2*n*a(n) +(-9*n+8)*a(n-1) +(3*n-16)*a(n-2) +2*(2*n-5)*a(n-3)=0. - R. J. Mathar, Dec 03 2012