cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014334 Exponential convolution of Fibonacci numbers with themselves.

Original entry on oeis.org

0, 0, 2, 6, 22, 70, 230, 742, 2406, 7782, 25190, 81510, 263782, 853606, 2762342, 8939110, 28927590, 93611622, 302933606, 980313702, 3172361830, 10265978470, 33221404262, 107506722406, 347899061862, 1125825013350, 3643246274150, 11789792601702
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2^n*Lucas(n) -2)/5: n in [0..40]]; // Vincenzo Librandi, Jul 15 2018
    
  • Mathematica
    LinearRecurrence[{3,2,-4}, {0,0,2}, 30] (* Harvey P. Dale, Oct 24 2015 *)
    Table[(2^n LucasL[n] -2)/5, {n,0,100}] (* Vladimir Reshetnikov, May 18 2016 *)
  • PARI
    a(n)=if(n<1,0,sum(k=0,n-1,fibonacci(k)*2^k))
    
  • SageMath
    [(2^n*lucas_number2(n,1,-1) -2)/5 for n in range(41)] # G. C. Greubel, Jan 06 2023

Formula

From Benoit Cloitre, May 29 2003: (Start)
a(n) = 3*a(n-1) + 2*a(n-2) - 4*a(n-3), a(0)=0, a(1)=0, a(2)=2.
a(n) = Sum_{k=0..n-1} 2^k*Fibonacci(k) for n > 0.
a(n) = (-2 + ((1+sqrt(5))^n + (1-sqrt(5))^n))/5. (End)
a(n) = Sum_{k=0..n} Fibonacci(k)*Fibonacci(n-k)*binomial(n, k). - Benoit Cloitre, May 11 2005
From R. J. Mathar, Sep 29 2010: (Start)
a(n) = 2*A014335(n).
G.f.: 2*x^2/((1-x)*(1-2*x-4*x^2)).
a(n) = Sum_{k=1..n-1} A103435(k). (End)
a(n) = (2^n*A000032(n) - 2)/5. - Vladimir Reshetnikov, May 18 2016
E.g.f.: 2*(cosh(sqrt(5)*x)-1)*exp(x)/5. - Ilya Gutkovskiy, May 18 2016
a(n) = ((Sum_{k=0..n} Lucas(k)*Lucas(n-k)*binomial(n, k)) - 4)/5 (Wall, 1986). - Amiram Eldar, Jan 27 2022