cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014345 Exponential convolution of primes with themselves.

Original entry on oeis.org

4, 12, 38, 118, 362, 1082, 3166, 8910, 24426, 64226, 165262, 413418, 1021362, 2490686, 6009150, 14401410, 34098042, 80281962, 187356750, 432549154, 992941250, 2256712462, 5088826238, 11408805862, 25425739346, 56383362854, 124565557898, 274390550594
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [&+[NthPrime(k+1)*NthPrime(n-k+1)*Binomial(n, k): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Jun 07 2019
    
  • Maple
    a:= proc(n) option remember; (p-> add(
          p(j+1)*p(n-j+1)*binomial(n, j), j=0..n))(ithprime)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    a[n_] := Sum[Prime[j + 1] Prime[n - j + 1] Binomial[n, j], {j, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, from Maple *)
  • PARI
    {a(n) = sum(j=0,n, binomial(n,j)*prime(j+1)*prime(n-j+1))}; \\ G. C. Greubel, Jun 07 2019
    
  • Sage
    [sum(binomial(n,j)*nth_prime(j+1)*nth_prime(n-j+1) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 07 2019

Formula

E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^2. - Ilya Gutkovskiy, Mar 10 2018
a(n) = Sum_{j=0..n} binomial(n,j)*prime(j+1)*prime(n-j+1). - G. C. Greubel, Jun 07 2019