A014345 Exponential convolution of primes with themselves.
4, 12, 38, 118, 362, 1082, 3166, 8910, 24426, 64226, 165262, 413418, 1021362, 2490686, 6009150, 14401410, 34098042, 80281962, 187356750, 432549154, 992941250, 2256712462, 5088826238, 11408805862, 25425739346, 56383362854, 124565557898, 274390550594
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[&+[NthPrime(k+1)*NthPrime(n-k+1)*Binomial(n, k): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Jun 07 2019
-
Maple
a:= proc(n) option remember; (p-> add( p(j+1)*p(n-j+1)*binomial(n, j), j=0..n))(ithprime) end: seq(a(n), n=0..30); # Alois P. Heinz, Mar 10 2018
-
Mathematica
a[n_] := Sum[Prime[j + 1] Prime[n - j + 1] Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 05 2018, from Maple *)
-
PARI
{a(n) = sum(j=0,n, binomial(n,j)*prime(j+1)*prime(n-j+1))}; \\ G. C. Greubel, Jun 07 2019
-
Sage
[sum(binomial(n,j)*nth_prime(j+1)*nth_prime(n-j+1) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 07 2019
Formula
E.g.f.: (Sum_{k>=0} prime(k+1)*x^k/k!)^2. - Ilya Gutkovskiy, Mar 10 2018
a(n) = Sum_{j=0..n} binomial(n,j)*prime(j+1)*prime(n-j+1). - G. C. Greubel, Jun 07 2019