A014421 Odd elements in Pascal's triangle.
1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 5, 1, 1, 15, 15, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 1, 1, 9, 9, 1, 1, 45, 45, 1, 1, 11, 55, 165, 165, 55, 11, 1, 1, 495, 495, 1, 1, 13, 715, 1287, 1287, 715, 13, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 15, 105, 455, 1365, 3003, 5005
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 1; 1, 3, 3, 1; 1, 1; 1, 5, 5, 1; 1, 15, 15, 1; 1, 7, 21, 35, 35, 21, 7, 1; ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10070 (rows 0 to 375, flattened)
- Arvind Ayyer, Amritanshu Prasad, Steven Spallone, Odd partitions in Young's lattice, arXiv:1601.01776 [math.CO], 2016. See Fig. 3.
- A. M. Reiter, Determining the dimension of fractals generated by Pascal’s triangle, Fibonacci Quart, 31(2):112-120, 1993.
Crossrefs
Cf. A143333. [From Reinhard Zumkeller, Oct 24 2010]
Programs
-
Maple
select(type, [seq(seq(binomial(n,k),k=0..n),n=0..20)],odd); # Robert Israel, Jan 11 2016
-
Mathematica
Select[ Flatten[ Table[ Binomial[ n, i ], {n, 0, 20}, {i, 0, n} ] ], OddQ ]
-
PARI
tabf(nn) = {for (n=0, nn, for (k=0, n, b = binomial(n, k); if (b % 2, print1(b, ", "))); print(););} \\ Michel Marcus, Jan 11 2016
Extensions
More terms from Erich Friedman
Keyword tabl replaced by tabf by Reinhard Zumkeller, Oct 21 2010
Offset changed to 0 by Michel Marcus, Jan 11 2016
Comments