cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014431 a(1) = 1, a(2) = 2, a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-2)*a(2) for n >= 3.

Original entry on oeis.org

1, 2, 2, 6, 14, 42, 122, 382, 1206, 3922, 12914, 43190, 145950, 498170, 1714026, 5940014, 20712646, 72623266, 255875298, 905477734, 3216853294, 11469069258, 41023019098, 147166210014, 529374272470, 1908965352434, 6899707805522, 24991194656022, 90698707816766
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    a:=[1,2]; for n in [3..30] do Append(~a,&+[a[k]*a[n-k]:k in [1..n-2]] ); end for; a; // Marius A. Burtea, Jan 02 2020
  • Mathematica
    Rest@ CoefficientList[Series[(1 + x - Sqrt[1 - 2 x - 7 x^2])/2, {x, 0, 27}], x] (* Michael De Vlieger, Jan 02 2020 *)
  • PARI
    a(n)=polcoeff((1+x-sqrt(1-2*x-7*x^2+x*O(x^n)))/2,n)
    

Formula

a(n) = 2*A025235(n-2) for n>=2.
G.f.: (1+x-sqrt(1-2*x-7*x^2))/2. - Michael Somos, Jun 08 2000
a(n) = (A084601(n) - A084601(n-1))/(2*(n-1)) for n > 1. - Mark van Hoeij, Jul 02 2010
G.f.: x + 2*x^2/G(0) with G(k) = (1 - x - 2*x^2/G(k+1)) (continued fraction). - Nikolaos Pantelidis, Dec 16 2022
From Peter Bala, May 01 2024: (Start)
O.g.f.: A(x) = x*S(x/(1 + 2*x)) = 2*x - x*S(- x/(1 - 4*x)), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. for the large Schröder numbers A006318.
The g.f. satisfies A(x)^2 - (1 + x)*A(x) + x*(1 + 2*x) = 0.
A(x) = x*(1 + 2*x)/(1 + x - x*(1 + 2*x)/(1 + x - x*(1 + 2*x)/(1 + x - ...))).
A(x) = x/(1 - 2*x/(1 + 2*x - x/(1 - 2*x/(1 + 2*x - x/(1 - 2*x/(1 + 2*x - x/(1 - ...))))))). (End)
D-finite with recurrence n*a(n) +(-2*n+3)*a(n-1) +7*(-n+3)*a(n-2)=0. - R. J. Mathar, Nov 22 2024

Extensions

Corrected by T. D. Noe, Oct 31 2006