A014473 Pascal's triangle - 1: Triangle read by rows: T(n, k) = A007318(n, k) - 1.
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 9, 9, 4, 0, 0, 5, 14, 19, 14, 5, 0, 0, 6, 20, 34, 34, 20, 6, 0, 0, 7, 27, 55, 69, 55, 27, 7, 0, 0, 8, 35, 83, 125, 125, 83, 35, 8, 0, 0, 9, 44, 119, 209, 251, 209, 119, 44, 9, 0, 0, 10, 54, 164, 329, 461, 461, 329, 164, 54, 10, 0
Offset: 0
Examples
Triangle begins: 0; 0, 0; 0, 1, 0; 0, 2, 2, 0; 0, 3, 5, 3, 0; 0, 4, 9, 9, 4, 0; 0, 5, 14, 19, 14, 5, 0; 0, 6, 20, 34, 34, 20, 6, 0; ... Seen as a square array read by antidiagonals: [0] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000004 [1] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... A001477 [2] 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, ... A000096 [3] 0, 3, 9, 19, 34, 55, 83, 119, 164, 219, 285, 363, ... A062748 [4] 0, 4, 14, 34, 69, 125, 209, 329, 494, 714, 1000, 1364, ... A063258 [5] 0, 5, 20, 55, 125, 251, 461, 791, 1286, 2001, 3002, 4367, ... A062988 [6] 0, 6, 27, 83, 209, 461, 923, 1715, 3002, 5004, 8007, 12375, ... A124089
Links
- Reinhard Zumkeller, Rows n=0..100 of triangle, flattened
- Milan Janjic, Two Enumerative Functions
Crossrefs
Triangle without zeros: A014430.
Programs
-
Haskell
a014473 n k = a014473_tabl !! n !! k a014473_row n = a014473_tabl !! n a014473_tabl = map (map (subtract 1)) a007318_tabl -- Reinhard Zumkeller, Apr 10 2012
-
Magma
[Binomial(n,k)-1: k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
-
Maple
with(combstruct): for n from 0 to 11 do seq(-1+count(Combination(n), size=m), m = 0 .. n) od; # Zerinvary Lajos, Apr 09 2008 # The rows of the square array: Arow := proc(n, len) local gf, ser; gf := (x - 1)^(-n - 1) + (-1)^(n + 1)/(x*(x - 1)); ser := series(gf, x, len+2): seq((-1)^(n+1)*coeff(ser, x, j), j=0..len) end: for n from 0 to 9 do lprint([n], Arow(n, 12)) od; # Peter Luschny, Feb 13 2019
-
Mathematica
Table[Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
-
SageMath
flatten([[binomial(n,k)-1 for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024
Formula
G.f.: x^2*y/((1 - x)*(1 - x*y)*(1 - x*(1 + y))). - Ralf Stephan, Jan 24 2005
T(n, k) = T(n-1, k-1) + T(n-1, k) + 1, 0 < k < n with T(n, 0) = T(n, n) = 0. - Reinhard Zumkeller, Jul 18 2015
If seen as a square array read by antidiagonals the generating function of row n is: G(n) = (x - 1)^(-n - 1) + (-1)^(n + 1)/(x*(x - 1)). - Peter Luschny, Feb 13 2019
From G. C. Greubel, Apr 08 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..floor(n/2)} T(n-k, k) = A129696(n-2).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n-1), where b(n) is the repeating pattern {0, 0, -1, -2, -1, 1, 1, -1, -2, -1, 0, 0}_{n=0..11}, with b(n) = b(n-12). (End)
Extensions
More terms from Erich Friedman
Comments