A014533 Form array in which n-th row is obtained by expanding (1 + x + x^2)^n and taking the 4th column from the center.
1, 5, 21, 77, 266, 882, 2850, 9042, 28314, 87802, 270270, 827190, 2520336, 7651632, 23162976, 69954048, 210859245, 634569201, 1907165337, 5725520801, 17172595110, 51465297950, 154135675070, 461366154990, 1380317174145
Offset: 1
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
Programs
-
Maple
a := n -> simplify(GegenbauerC(n-1, -n-3, -1/2)): seq(a(n), n=1..25); # Peter Luschny, May 09 2016
-
Mathematica
Rest[CoefficientList[Series[x*((1-x-Sqrt[1-2*x-3*x^2])/(2*x^2))^4/(1-x-2*x^2*(1-x-Sqrt[1-2*x-3*x^2])/(2*x^2)), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 20 2015 *) Table[GegenbauerC[n-1, -n - 3, -1/2], {n,0,50}] (* G. C. Greubel, Feb 28 2017 *)
-
PARI
x='x + O('x^50); Vec(x*((1-x-sqrt(1-2*x-3*x^2))/(2*x^2))^4/(1-x-2*x^2*(1-x-sqrt(1-2*x-3*x^2))/(2*x^2))) \\ G. C. Greubel, Feb 28 2017
Formula
Conjecture: -(n+7)*(n-1)*a(n) + (n+3)*(2*n+5)*a(n-1) + 3*(n+3)*(n+2)*a(n-2) = 0. - R. J. Mathar, Feb 25 2015
G.f.: z*M(z)^4/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) ~ 3^(n+7/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 20 2015
From Peter Luschny, May 09 2016: (Start)
a(n) = C(6+2*n, n-1)*hypergeom([-n+1, -n-7], [-5/2-n], 1/4).
a(n) = GegenbauerC(n-1, -n-3, -1/2). (End)
Extensions
More terms from James Sellers, Feb 05 2000
Comments