A111808 Left half of trinomial triangle (A027907), triangle read by rows.
1, 1, 1, 1, 2, 3, 1, 3, 6, 7, 1, 4, 10, 16, 19, 1, 5, 15, 30, 45, 51, 1, 6, 21, 50, 90, 126, 141, 1, 7, 28, 77, 161, 266, 357, 393, 1, 8, 36, 112, 266, 504, 784, 1016, 1107, 1, 9, 45, 156, 414, 882, 1554, 2304, 2907, 3139, 1, 10, 55, 210, 615, 1452, 2850, 4740, 6765, 8350
Offset: 1
References
- Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Eric Weisstein's World of Mathematics, Trinomial Triangle
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
Crossrefs
T(n, 0) = 0;
T(n, 1) = n for n>1;
T(n, 2) = A000217(n) for n>1;
T(n, 3) = A005581(n) for n>2;
T(n, 4) = A005712(n) for n>3;
T(n, 5) = A000574(n) for n>4;
T(n, 6) = A005714(n) for n>5;
T(n, 7) = A005715(n) for n>6;
T(n, 8) = A005716(n) for n>7;
T(n, 9) = A064054(n-5) for n>8;
T(n, n-5) = A098470(n) for n>4;
T(n, n-4) = A014533(n-3) for n>3;
T(n, n-3) = A014532(n-2) for n>2;
T(n, n-2) = A014531(n-1) for n>1;
T(n, n-1) = A005717(n) for n>0;
Programs
-
Maple
T := (n,k) -> simplify(GegenbauerC(k, -n, -1/2)): for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 09 2016
-
Mathematica
Table[GegenbauerC[k, -n, -1/2], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)
Formula
(1 + x + x^2)^n = Sum(T(n,k)*x^k: 0<=k<=n) + Sum(T(n,k)*x^(2*n-k): 0<=k
T(n, k) = A027907(n, k) = Sum_{i=0,..,(k/2)} binomial(n, n-k+2*i) * binomial(n-k+2*i, i), 0<=k<=n.
T(n, k) = GegenbauerC(k, -n, -1/2). - Peter Luschny, May 09 2016
Extensions
Corrected and edited by Johannes W. Meijer, Oct 05 2010
A014532 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 3rd column from the center.
1, 4, 15, 50, 161, 504, 1554, 4740, 14355, 43252, 129844, 388752, 1161615, 3465840, 10329336, 30759120, 91538523, 272290140, 809676735, 2407049106, 7154586747, 21263575256, 63191778950, 187790510700, 558069593445, 1658498131836
Offset: 1
Keywords
Comments
Number of Dyck paths of semilength n+2 having exactly one occurrence of UUU, where U=(1,1). E.g. a(2)=4 because we have UDUUUDDD, UUUDDDUD, UUUDDUDD and UUUDUDDD, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Dec 05 2003
a(n) is the number of Motzkin (2n+2)-paths whose longest basin has length n-1. A basin is a sequence of contiguous flatsteps preceded by a down step and followed by an up step. Example: a(2) counts FUDFUD, UDFUDF, UDFUFD, UFDFUD. - David Callan, Jul 15 2004
a(n) is the total number of valleys (DUs) in all Motzkin (n+3)-paths. Example: a(2)=4 counts the valleys (indicated by *) in FUD*UD, UD*UDF, UD*UFD, UFD*UD; the remaining 17 Motzkin 5-paths contain no valleys. - David Callan, Jul 03 2006
a(n) is the number of lattice paths from (0,0) to (n+1,n-1) taking north and east steps avoiding north^{>=3}. - Shanzhen Gao, Apr 20 2010
a(n) is the number of paths in the half-plane x>=0, from (0,0) to (n+2,3), and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). For example, for n=2, we have the 4 paths: HUUU, UHUU, UUHU, UUUH. - José Luis Ramírez Ramírez, Apr 19 2015
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 0..200 from T. D. Noe)
- Mark Shattuck, Subword Patterns in Smooth Words, Enum. Comb. Appl. (2024) Vol. 4, No. 4, Art. No. S2R32. See p. 10.
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
Programs
-
Maple
a := n -> simplify(GegenbauerC(n-1, -n-2, -1/2)): seq(a(n), n=1..26); # Peter Luschny, May 09 2016
-
Mathematica
Table[GegenbauerC[n - 1, -n - 2, -1/2], {n,1,50}] (* G. C. Greubel, Feb 28 2017 *)
-
PARI
z='z+O('z^50); Vec(2*z/(1-4*z+z^2+6*z^3+(1-3*z+2*z^3)*sqrt(1-2*z-3*z^2))) \\ G. C. Greubel, Feb 28 2017
Formula
G.f.: 2*z/(1-4*z+z^2+6*z^3+(1-3*z+2*z^3)*sqrt(1-2*z-3*z^2)). - Emeric Deutsch, Dec 05 2003
E.g.f.: exp(x)*BesselI(3, 2x) [0, 0, 0, 1, 4, 15..]. - Paul Barry, Sep 21 2004
a(n-2) = A111808(n,n-3) for n>2. - Reinhard Zumkeller, Aug 17 2005
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n+2,n-1-i) * binomial(n-1-i,i). - Shanzhen Gao, Apr 20 2010
a(n) = -(1/(162*(n+5)*(n+3)))*(9*n+18)*(-1)^n*(-3)^(1/2) * ((n+7)*hypergeom([1/2, n+5],[1],4/3) + hypergeom([1/2, n+4],[1],4/3) * (5*n+19)). - Mark van Hoeij, Oct 30 2011
D-finite with recurrence -(n+5)*(n-1)*a(n) +(n+2)*(2*n+3)*a(n-1) +3*(n+2)*(n+1)*a(n-2)=0. - R. J. Mathar, Dec 02 2012
a(n) ~ 3^(n+5/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 10 2013
G.f.: z*M(z)^3/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths (A001006). - José Luis Ramírez Ramírez, Apr 19 2015
From Peter Luschny, May 09 2016: (Start)
a(n) = C(4+2*n, n-1)*hypergeom([-n+1, -n-5], [-3/2-n], 1/4).
a(n) = GegenbauerC(n-1, -n-2, -1/2). (End)
Extensions
More terms from James Sellers, Feb 05 2000
A025182 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A025177.
1, 4, 16, 56, 189, 616, 1968, 6192, 19272, 59488, 182468, 556920, 1693146, 5131296, 15511344, 46791072, 140905197, 423709956, 1272596136, 3818355464, 11447074309, 34292702840, 102670377120, 307230479920, 918951019155, 2747624937876
Offset: 4
Keywords
Comments
Apparently first differences of A014533.
Formula
Conjecture: -(n-4)*(n+4)*a(n) +(4*n^2-7*n-29)*a(n-1) +(-2*n^2+17*n-2)*a(n-2) -(4*n+1)*(n-3)*a(n-3) +3*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Feb 25 2015
Conjecture: -(n-4)*(n+4)*(n^2-3*n+6)*a(n) +(n-1)*(2*n^3-5*n^2+11*n-36)*a(n-1) +3*(n-1)*(n-2)*(n^2-n+4)*a(n-2)=0. - R. J. Mathar, Feb 25 2015
A098470 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 5th column from the center.
1, 6, 28, 112, 414, 1452, 4917, 16236, 52624, 168168, 531531, 1665456, 5182008, 16031952, 49366674, 151419816, 462919401, 1411306358, 4292487562, 13029127584, 39478598170, 119439969220, 360881425710, 1089126806040
Offset: 5
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 5..1005
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
Programs
-
Maple
# Assuming offset 0: a := n -> simplify(GegenbauerC(n, -n-5, -1/2)): seq(a(n), n=0..25); # Peter Luschny, May 09 2016
-
Mathematica
Table[GegenbauerC[n, -n - 5, -1/2], {n,0,50}] (* G. C. Greubel, Feb 28 2017 *)
-
PARI
x='x + O('x^50); Vec(32*x^5/(sqrt((1+x)*(1-3*x))*(1-x-sqrt((1+x)*(1-3*x)))^5)) \\ G. C. Greubel, Feb 28 2017
Formula
(n^2-25)*a(n) = n*(2*n-1)*a(n-1) + 3*n*(n-1)*a(n-2). - Vladeta Jovovic, Sep 18 2004
G.f.: 32*x^5/(sqrt((1+x)*(1-3*x))*(1-x-sqrt((1+x)*(1-3*x)))^5). - Vladeta Jovovic, Sep 18 2004
a(n) = A111808(n,n-5). - Reinhard Zumkeller, Aug 17 2005
Assuming offset 0: a(n) = GegenbauerC(n,-n-5,-1/2) and a(n) = binomial(10+2*n,n)* hypergeom([-n, -n-10], [-9/2-n], 1/4). - Peter Luschny, May 09 2016
a(n) ~ 3^(n + 1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 09 2021
Comments