A111808 Left half of trinomial triangle (A027907), triangle read by rows.
1, 1, 1, 1, 2, 3, 1, 3, 6, 7, 1, 4, 10, 16, 19, 1, 5, 15, 30, 45, 51, 1, 6, 21, 50, 90, 126, 141, 1, 7, 28, 77, 161, 266, 357, 393, 1, 8, 36, 112, 266, 504, 784, 1016, 1107, 1, 9, 45, 156, 414, 882, 1554, 2304, 2907, 3139, 1, 10, 55, 210, 615, 1452, 2850, 4740, 6765, 8350
Offset: 1
References
- Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Eric Weisstein's World of Mathematics, Trinomial Triangle
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
Crossrefs
T(n, 0) = 0;
T(n, 1) = n for n>1;
T(n, 2) = A000217(n) for n>1;
T(n, 3) = A005581(n) for n>2;
T(n, 4) = A005712(n) for n>3;
T(n, 5) = A000574(n) for n>4;
T(n, 6) = A005714(n) for n>5;
T(n, 7) = A005715(n) for n>6;
T(n, 8) = A005716(n) for n>7;
T(n, 9) = A064054(n-5) for n>8;
T(n, n-5) = A098470(n) for n>4;
T(n, n-4) = A014533(n-3) for n>3;
T(n, n-3) = A014532(n-2) for n>2;
T(n, n-2) = A014531(n-1) for n>1;
T(n, n-1) = A005717(n) for n>0;
Programs
-
Maple
T := (n,k) -> simplify(GegenbauerC(k, -n, -1/2)): for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 09 2016
-
Mathematica
Table[GegenbauerC[k, -n, -1/2], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)
Formula
(1 + x + x^2)^n = Sum(T(n,k)*x^k: 0<=k<=n) + Sum(T(n,k)*x^(2*n-k): 0<=k
T(n, k) = A027907(n, k) = Sum_{i=0,..,(k/2)} binomial(n, n-k+2*i) * binomial(n-k+2*i, i), 0<=k<=n.
T(n, k) = GegenbauerC(k, -n, -1/2). - Peter Luschny, May 09 2016
Extensions
Corrected and edited by Johannes W. Meijer, Oct 05 2010
A243827 Number A(n,k) of Dyck paths of semilength n having exactly one occurrence of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 4, 6, 1, 0, 0, 0, 0, 1, 2, 11, 10, 1, 0, 0, 0, 0, 0, 4, 6, 26, 15, 1, 0, 0, 0, 0, 0, 1, 11, 16, 57, 21, 1, 0, 0, 0, 0, 0, 1, 4, 26, 45, 120, 28, 1, 0, 0, 0, 0, 1, 1, 5, 15, 57, 126, 247, 36, 1, 0, 0
Offset: 0
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ... 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, ... 0, 0, 1, 3, 4, 2, 4, 1, 1, 1, ... 0, 0, 1, 6, 11, 6, 11, 4, 5, 5, ... 0, 0, 1, 10, 26, 16, 26, 15, 21, 17, ... 0, 0, 1, 15, 57, 45, 57, 50, 78, 54, ... 0, 0, 1, 21, 120, 126, 120, 161, 274, 177, ... 0, 0, 1, 28, 247, 357, 247, 504, 927, 594, ... 0, 0, 1, 36, 502, 1016, 502, 1554, 3061, 1997, ...
Links
- Alois P. Heinz, antidiagonals n = 0..140, flattened
A014531 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 2nd column from the center.
1, 3, 10, 30, 90, 266, 784, 2304, 6765, 19855, 58278, 171106, 502593, 1477035, 4343160, 12778152, 37616427, 110797569, 326527350, 962803170, 2840372304, 8383467708, 24755608584, 73133433800, 216143407675, 639062383401
Offset: 1
Comments
Number of "up" steps in all Motzkin paths of length n+1. E.g. a(2)=3 because in the four Motzkin paths of length 3, HHH, HUD, UDH and UHD, where H=(1,0), U=(1,1), D=(1,-1), we have altogether three U steps. - Emeric Deutsch, Dec 26 2003
a(n-1) = A111808(n,n-2) for n>1. - Reinhard Zumkeller, Aug 17 2005
a(n) = number of paths in the half-plane x>=0, from (0,0) to (n+1,2), and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). For example, for n=2, we have the 3 paths: UUH, HUU, UHU. - José Luis Ramírez Ramírez, Apr 19 2015
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..200 from T. D. Noe)
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See pp. 21-22.
- Mark Shattuck, Subword Patterns in Smooth Words, Enum. Comb. Appl. (2024) Vol. 4, No. 4, Art. No. S2R32. See p. 6.
- Eric Weisstein's World of Mathematics, Trinomial Coefficient.
Programs
-
Maple
seq( add(binomial(i+1,k)*binomial(i-k+1,k+2), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001 a := n -> simplify(GegenbauerC(n-1, -n-1, -1/2)): seq(a(n), n=1..26); # Peter Luschny, May 09 2016
-
Mathematica
Table[Sum[Binomial[i + 1, k]*Binomial[i - k + 1, k + 2], {k, 0, Floor[i/2]}], {i, 30}] (* Michael De Vlieger, Apr 20 2015 *) Table[GegenbauerC[n - 1, -n - 1, -1/2], {n,1,50}] (* G. C. Greubel, Feb 28 2017 *)
-
PARI
for(n=1,25, print1(sum(k=0,n+1, binomial(n+1,k)*binomial(n-k+1,k+2)), ", ")) \\ G. C. Greubel, Feb 28 2017
-
Sage
a = lambda n: n*(n+1)*hypergeometric([(1-n)/2, 1-n/2], [3], 4)/2 [simplify(a(n)) for n in (1..26)] # Peter Luschny, Nov 23 2014
Formula
E.g.f.: exp(x)*(2*x*BesselI(1, 2*x)+(x-2)*BesselI(2, 2*x))/x. - Vladeta Jovovic, Aug 21 2003
G.f.: [1-2z-z^2-(1-z)q]/(2z^3q), where q=sqrt(1-2z-3z^2). - Emeric Deutsch, Dec 26 2003
a(n) = Sum_{k=0..n+1} C(n+1,k)*C(n-k+1,k+2). - Paul Barry, Sep 20 2004
D-finite with recurrence (n+3)*(n-1)*a(n) -(n+1)*(2n+1)*a(n-2)-3*n*(n+1)*a(n-2)=0. - R. J. Mathar, Dec 08 2011
a(n) = n*(n+1)*hypergeom([(1-n)/2, 1-n/2], [3], 4)/2. - Peter Luschny, Nov 23 2014
G.f.: z*M(z)^2/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = GegenbauerC(n-1, -n-1, -1/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k>0} k * A055151(n+1,k). - Alois P. Heinz, Mar 29 2020
Extensions
More terms from James Sellers, Feb 05 2000
A025181 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A025177.
1, 3, 11, 35, 111, 343, 1050, 3186, 9615, 28897, 86592, 258908, 772863, 2304225, 6863496, 20429784, 60779403, 180751617, 537386595, 1597372371, 4747537641, 14108988509, 41928203694, 124598731750, 370279082745, 1100428538391, 3270534249843
Offset: 3
Keywords
Formula
Conjecture: +(n+3)*a(n) +(-5*n-7)*a(n-1) +(3*n-7)*a(n-2) +(11*n-7)*a(n-3) +4*(-n+6)*a(n-4) +6*(-n+5)*a(n-5)=0. - R. J. Mathar, Feb 25 2015
Conjecture: -(n+3)*(n-3)*(4*n^2-12*n+17)*a(n) +(n-1)*(8*n^3-20*n^2+30*n-81)*a(n-1) +3*(n-1)*(n-2)*(4*n^2-4*n+9)*a(n-2)=0. - R. J. Mathar, Feb 25 2015
A092107 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having exactly k UUU's (triple rises) where U=(1,1). Rows have 1,1,1,2,3,4,5,... entries, respectively.
1, 1, 2, 4, 1, 9, 4, 1, 21, 15, 5, 1, 51, 50, 24, 6, 1, 127, 161, 98, 35, 7, 1, 323, 504, 378, 168, 48, 8, 1, 835, 1554, 1386, 750, 264, 63, 9, 1, 2188, 4740, 4920, 3132, 1335, 390, 80, 10, 1, 5798, 14355, 17028, 12507, 6237, 2200, 550, 99, 11, 1, 15511, 43252, 57816
Offset: 0
Comments
Examples
T(5,2) = 5 because we have (U[UU)U]DUDDDD, (U[UU)U]DDUDDD, (U[UU)U]DDDUDD, (U[UU)U]DDDDUD and UD(U[UU)U]DDDD, where U=(1,1), D=(1,-1); the triple rises are shown between parentheses. [1],[1],[2],[4, 1],[9, 4, 1],[21, 15, 5, 1],[51, 50, 24, 6, 1],[127, 161, 98, 35, 7, 1] Triangle starts: 1; 1; 2; 4, 1; 9, 4, 1; 21, 15, 5, 1; 51, 50, 24, 6, 1; 127, 161, 98, 35, 7, 1; 323, 504, 378, 168, 48, 8, 1; 835, 1554, 1386, 750, 264, 63, 9, 1; 2188, 4740, 4920, 3132, 1335, 390, 80, 10, 1; ...
Links
- Alois P. Heinz, Rows n = 0..150, flattened
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 14.
- Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth, and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv:1812.07112 [math.CO], 2018.
- FindStat - Combinatorial Statistic Finder, The number of occurrences of the contiguous pattern [.,[.,[.,.]]].
- Lara Pudwell, On the distribution of peaks (and other statistics), 16th International Conference on Permutation Patterns, Dartmouth College, 2018.
- Toufik Mansour and Mark Shattuck, Counting occurrences of subword patterns in non-crossing partitions, Art Disc. Appl. Math. (2022).
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Aristidis Sapounakis, Panagiotis Tsikouras, Ioannis Tasoulas, and Kostas Manes, Strings of Length 3 in Grand-Dyck Paths and the Chung-Feller Property, Electr. J. Combinatorics, 19 (2012), #P2.
- Yidong Sun, The statistic "number of udu's" in Dyck paths, Discrete Math., 287 (2004), 177-186.
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, expand(b(x-1, y-1, min(t+1,2))* `if`(t=2, z, 1) +b(x-1, y+1, 0)))) end: T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)): seq(T(n), n=0..12); # Alois P. Heinz, Mar 11 2014
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y-1, Min[t+1, 2]]*If[t == 2, z, 1] + b[x-1, y+1, 0]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)
Formula
G.f.: G(t, z) satisfies z(t+z-tz)G^2 - (1-z+tz)G + 1 = 0.
Sum_{k=0..n} T(n,k)*x^k = A001405(n), A001006(n), A000108(n), A033321(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 10 2009
A025568 a(n) = T(n,n+2) where T is the array defined in A025564.
1, 5, 19, 65, 211, 665, 2058, 6294, 19095, 57607, 173096, 518596, 1550367, 4627455, 13795176, 41088456, 122297643, 363828663, 1081966875, 3216725841, 9561635853, 28418162003, 84455354206, 250982289650, 745860104145, 2216567725281
Offset: 1
Keywords
A026070 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A024996.
1, 2, 8, 24, 76, 232, 707, 2136, 6429, 19282, 57695, 172316, 513955, 1531362, 4559271, 13566288, 40349619, 119972214, 356634978, 1059985776, 3150165270, 9361450868, 27819215185, 82670528056, 245680350995, 730149455646, 2170105711452
Offset: 3
Keywords
Formula
Conjecture: (n+3)*a(n) +(-5*n-6)*a(n-1) +(3*n-11)*a(n-2) +(11*n-8)*a(n-3) +2*(-2*n+17)*a(n-4) +6*(-n+6)*a(n-5)=0. - R. J. Mathar, Jun 23 2013
A098470 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 5th column from the center.
1, 6, 28, 112, 414, 1452, 4917, 16236, 52624, 168168, 531531, 1665456, 5182008, 16031952, 49366674, 151419816, 462919401, 1411306358, 4292487562, 13029127584, 39478598170, 119439969220, 360881425710, 1089126806040
Offset: 5
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 5..1005
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
Programs
-
Maple
# Assuming offset 0: a := n -> simplify(GegenbauerC(n, -n-5, -1/2)): seq(a(n), n=0..25); # Peter Luschny, May 09 2016
-
Mathematica
Table[GegenbauerC[n, -n - 5, -1/2], {n,0,50}] (* G. C. Greubel, Feb 28 2017 *)
-
PARI
x='x + O('x^50); Vec(32*x^5/(sqrt((1+x)*(1-3*x))*(1-x-sqrt((1+x)*(1-3*x)))^5)) \\ G. C. Greubel, Feb 28 2017
Formula
(n^2-25)*a(n) = n*(2*n-1)*a(n-1) + 3*n*(n-1)*a(n-2). - Vladeta Jovovic, Sep 18 2004
G.f.: 32*x^5/(sqrt((1+x)*(1-3*x))*(1-x-sqrt((1+x)*(1-3*x)))^5). - Vladeta Jovovic, Sep 18 2004
a(n) = A111808(n,n-5). - Reinhard Zumkeller, Aug 17 2005
Assuming offset 0: a(n) = GegenbauerC(n,-n-5,-1/2) and a(n) = binomial(10+2*n,n)* hypergeom([-n, -n-10], [-9/2-n], 1/4). - Peter Luschny, May 09 2016
a(n) ~ 3^(n + 1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 09 2021
A116401 Triangle whose k-th column has e.g.f. exp(x)*sum{j=0..k, Bessel_I(k+j,2x)}.
1, 1, 1, 3, 3, 1, 7, 9, 4, 1, 19, 26, 15, 5, 1, 51, 75, 50, 21, 6, 1, 141, 216, 161, 78, 28, 7, 1, 393, 623, 504, 273, 113, 36, 8, 1, 1107, 1800, 1554, 918, 423, 157, 45, 9, 1, 3139, 5211, 4740, 3006, 1506, 625, 211, 55, 10, 1, 8953, 15115, 14355, 9657, 5182, 2343, 891, 276
Offset: 0
Examples
Triangle begins: 1, 1, 1, 3, 3, 1, 7, 9, 4, 1, 19, 26, 15, 5, 1, 51, 75, 50, 21, 6, 1 ...
A126218 Triangle read by rows: T(n,k) is the number of 0-1-2 trees (i.e., ordered trees with all vertices of outdegree at most two) with n edges and k pairs of adjacent vertices of outdegree 2.
1, 1, 2, 4, 7, 2, 13, 8, 26, 20, 5, 52, 50, 25, 104, 130, 75, 14, 212, 322, 217, 84, 438, 770, 644, 294, 42, 910, 1836, 1806, 952, 294, 1903, 4362, 4830, 3108, 1176, 132, 4009, 10268, 12738, 9576, 4188, 1056, 8494, 24032, 33219, 27948, 14760, 4752, 429, 18080
Offset: 0
Comments
Examples
Triangle starts: 1; 1; 2; 4; 7, 2; 13, 8; 26, 20, 5; 52, 50, 25;
Programs
-
Maple
G:=1/2*(2*z^2*t^2-z+4*z^3*t-2*z^3*t^2-2*z^2*t-2*z^3+1-sqrt(1+4*z^3*t-4*z^2*t+z^2-2*z-4*z^3))/z^2/(z*t-t-z)^2: Gser:=simplify(series(G,z=0,18)): for n from 0 to 15 do P[n]:=sort(coeff(Gser,z,n)) od: 1;1; for n from 2 to 15 do seq(coeff(P[n],t,j),j=0..floor(n/2)-1) od; # yields sequence in triangular form
Formula
G.f.: G = G(t,z) satisfies G = 1 + zG + z^2*(1 + zG + t(G-1-zG))^2 (see the Maple program for the explicit expression).
Comments