cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A111808 Left half of trinomial triangle (A027907), triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 7, 1, 4, 10, 16, 19, 1, 5, 15, 30, 45, 51, 1, 6, 21, 50, 90, 126, 141, 1, 7, 28, 77, 161, 266, 357, 393, 1, 8, 36, 112, 266, 504, 784, 1016, 1107, 1, 9, 45, 156, 414, 882, 1554, 2304, 2907, 3139, 1, 10, 55, 210, 615, 1452, 2850, 4740, 6765, 8350
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 17 2005

Keywords

Comments

Consider a doubly infinite chessboard with squares labeled (n,k), ranks or rows n in Z, files or columns k in Z (Z denotes ...,-2,-1,0,1,2,... ); number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,n-k). - Harrie Grondijs, May 27 2005. Cf. A026300, A114929, A114972.
Triangle of numbers C^(2)(n-1,k), n>=1, of combinations with repetitions from elements {1,2,...,n} over k, such that every element i, i=1,...,n, appears in a k-combination either 0 or 1 or 2 times (cf. also A213742-A213745). - Vladimir Shevelev and Peter J. C. Moses, Jun 19 2012

References

  • Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.

Crossrefs

Row sums give A027914; central terms give A027908;
T(n, 0) = 0;
T(n, 1) = n for n>1;
T(n, 2) = A000217(n) for n>1;
T(n, 3) = A005581(n) for n>2;
T(n, 4) = A005712(n) for n>3;
T(n, 5) = A000574(n) for n>4;
T(n, 6) = A005714(n) for n>5;
T(n, 7) = A005715(n) for n>6;
T(n, 8) = A005716(n) for n>7;
T(n, 9) = A064054(n-5) for n>8;
T(n, n-5) = A098470(n) for n>4;
T(n, n-4) = A014533(n-3) for n>3;
T(n, n-3) = A014532(n-2) for n>2;
T(n, n-2) = A014531(n-1) for n>1;
T(n, n-1) = A005717(n) for n>0;
T(n, n) = central terms of A027907 = A002426(n).

Programs

  • Maple
    T := (n,k) -> simplify(GegenbauerC(k, -n, -1/2)):
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 09 2016
  • Mathematica
    Table[GegenbauerC[k, -n, -1/2], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)

Formula

(1 + x + x^2)^n = Sum(T(n,k)*x^k: 0<=k<=n) + Sum(T(n,k)*x^(2*n-k): 0<=k
T(n, k) = A027907(n, k) = Sum_{i=0,..,(k/2)} binomial(n, n-k+2*i) * binomial(n-k+2*i, i), 0<=k<=n.
T(n, k) = GegenbauerC(k, -n, -1/2). - Peter Luschny, May 09 2016

Extensions

Corrected and edited by Johannes W. Meijer, Oct 05 2010

A243827 Number A(n,k) of Dyck paths of semilength n having exactly one occurrence of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 4, 6, 1, 0, 0, 0, 0, 1, 2, 11, 10, 1, 0, 0, 0, 0, 0, 4, 6, 26, 15, 1, 0, 0, 0, 0, 0, 1, 11, 16, 57, 21, 1, 0, 0, 0, 0, 0, 1, 4, 26, 45, 120, 28, 1, 0, 0, 0, 0, 1, 1, 5, 15, 57, 126, 247, 36, 1, 0, 0
Offset: 0

Author

Alois P. Heinz, Jun 11 2014

Keywords

Examples

			Square array A(n,k) begins:
  0, 0, 0,  0,   0,    0,   0,    0,    0,    0, ...
  1, 1, 1,  0,   0,    0,   0,    0,    0,    0, ...
  0, 0, 1,  1,   1,    1,   1,    0,    0,    0, ...
  0, 0, 1,  3,   4,    2,   4,    1,    1,    1, ...
  0, 0, 1,  6,  11,    6,  11,    4,    5,    5, ...
  0, 0, 1, 10,  26,   16,  26,   15,   21,   17, ...
  0, 0, 1, 15,  57,   45,  57,   50,   78,   54, ...
  0, 0, 1, 21, 120,  126, 120,  161,  274,  177, ...
  0, 0, 1, 28, 247,  357, 247,  504,  927,  594, ...
  0, 0, 1, 36, 502, 1016, 502, 1554, 3061, 1997, ...
		

Crossrefs

Columns k=2-10 give: A000012(n) for n>0, A000217(n-1) for n>0, A000295(n-1) for n>0, A005717(n-1) for n>1, A000295(n-1) for n>0, A014532(n-2) for n>2, A108863, A244235, A244236.
Main diagonal gives A243770 or column k=1 of A243752.

A014531 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 2nd column from the center.

Original entry on oeis.org

1, 3, 10, 30, 90, 266, 784, 2304, 6765, 19855, 58278, 171106, 502593, 1477035, 4343160, 12778152, 37616427, 110797569, 326527350, 962803170, 2840372304, 8383467708, 24755608584, 73133433800, 216143407675, 639062383401
Offset: 1

Keywords

Comments

Number of "up" steps in all Motzkin paths of length n+1. E.g. a(2)=3 because in the four Motzkin paths of length 3, HHH, HUD, UDH and UHD, where H=(1,0), U=(1,1), D=(1,-1), we have altogether three U steps. - Emeric Deutsch, Dec 26 2003
a(n-1) = A111808(n,n-2) for n>1. - Reinhard Zumkeller, Aug 17 2005
a(n) = number of paths in the half-plane x>=0, from (0,0) to (n+1,2), and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). For example, for n=2, we have the 3 paths: UUH, HUU, UHU. - José Luis Ramírez Ramírez, Apr 19 2015

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.

Crossrefs

First differences are in A025180.

Programs

  • Maple
    seq( add(binomial(i+1,k)*binomial(i-k+1,k+2), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
    a := n -> simplify(GegenbauerC(n-1, -n-1, -1/2)):
    seq(a(n), n=1..26); # Peter Luschny, May 09 2016
  • Mathematica
    Table[Sum[Binomial[i + 1, k]*Binomial[i - k + 1, k + 2], {k, 0, Floor[i/2]}], {i, 30}] (* Michael De Vlieger, Apr 20 2015 *)
    Table[GegenbauerC[n - 1, -n - 1, -1/2], {n,1,50}] (* G. C. Greubel, Feb 28 2017 *)
  • PARI
    for(n=1,25, print1(sum(k=0,n+1, binomial(n+1,k)*binomial(n-k+1,k+2)), ", ")) \\ G. C. Greubel, Feb 28 2017
  • Sage
    a = lambda n: n*(n+1)*hypergeometric([(1-n)/2, 1-n/2], [3], 4)/2
    [simplify(a(n)) for n in (1..26)] # Peter Luschny, Nov 23 2014
    

Formula

a(n) = A002426(n+1)-A001006(n+1) = a(n-1)+A005717(n)+A014532(n-2) - Henry Bottomley, May 15 2001
E.g.f.: exp(x)*(2*x*BesselI(1, 2*x)+(x-2)*BesselI(2, 2*x))/x. - Vladeta Jovovic, Aug 21 2003
G.f.: [1-2z-z^2-(1-z)q]/(2z^3q), where q=sqrt(1-2z-3z^2). - Emeric Deutsch, Dec 26 2003
a(n) = Sum_{k=0..n+1} C(n+1,k)*C(n-k+1,k+2). - Paul Barry, Sep 20 2004
D-finite with recurrence (n+3)*(n-1)*a(n) -(n+1)*(2n+1)*a(n-2)-3*n*(n+1)*a(n-2)=0. - R. J. Mathar, Dec 08 2011
a(n) = n*(n+1)*hypergeom([(1-n)/2, 1-n/2], [3], 4)/2. - Peter Luschny, Nov 23 2014
G.f.: z*M(z)^2/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = GegenbauerC(n-1, -n-1, -1/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k>0} k * A055151(n+1,k). - Alois P. Heinz, Mar 29 2020

Extensions

More terms from James Sellers, Feb 05 2000

A025181 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A025177.

Original entry on oeis.org

1, 3, 11, 35, 111, 343, 1050, 3186, 9615, 28897, 86592, 258908, 772863, 2304225, 6863496, 20429784, 60779403, 180751617, 537386595, 1597372371, 4747537641, 14108988509, 41928203694, 124598731750, 370279082745, 1100428538391, 3270534249843
Offset: 3

Keywords

Crossrefs

Cf. A025568.
First differences of A014532. First differences are in A026070.

Formula

Conjecture: +(n+3)*a(n) +(-5*n-7)*a(n-1) +(3*n-7)*a(n-2) +(11*n-7)*a(n-3) +4*(-n+6)*a(n-4) +6*(-n+5)*a(n-5)=0. - R. J. Mathar, Feb 25 2015
Conjecture: -(n+3)*(n-3)*(4*n^2-12*n+17)*a(n) +(n-1)*(8*n^3-20*n^2+30*n-81)*a(n-1) +3*(n-1)*(n-2)*(4*n^2-4*n+9)*a(n-2)=0. - R. J. Mathar, Feb 25 2015

A092107 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having exactly k UUU's (triple rises) where U=(1,1). Rows have 1,1,1,2,3,4,5,... entries, respectively.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 4, 1, 21, 15, 5, 1, 51, 50, 24, 6, 1, 127, 161, 98, 35, 7, 1, 323, 504, 378, 168, 48, 8, 1, 835, 1554, 1386, 750, 264, 63, 9, 1, 2188, 4740, 4920, 3132, 1335, 390, 80, 10, 1, 5798, 14355, 17028, 12507, 6237, 2200, 550, 99, 11, 1, 15511, 43252, 57816
Offset: 0

Author

Emeric Deutsch, Mar 29 2004

Keywords

Comments

Column 0 gives the Motzkin numbers (A001006), column 1 gives A014532. Row sums are the Catalan numbers (A000108).
Equal to A171380*B (without the zeros), B = A007318. - Philippe Deléham, Dec 10 2009

Examples

			T(5,2) = 5 because we have (U[UU)U]DUDDDD, (U[UU)U]DDUDDD, (U[UU)U]DDDUDD, (U[UU)U]DDDDUD and UD(U[UU)U]DDDD, where U=(1,1), D=(1,-1); the triple rises are shown between parentheses.
[1],[1],[2],[4, 1],[9, 4, 1],[21, 15, 5, 1],[51, 50, 24, 6, 1],[127, 161, 98, 35, 7, 1]
Triangle starts:
     1;
     1;
     2;
     4,    1;
     9,    4,    1;
    21,   15,    5,    1;
    51,   50,   24,    6,    1;
   127,  161,   98,   35,    7,    1;
   323,  504,  378,  168,   48,    8,    1;
   835, 1554, 1386,  750,  264,   63,    9,    1;
  2188, 4740, 4920, 3132, 1335,  390,   80,   10,    1;
  ...
		

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, expand(b(x-1, y-1, min(t+1,2))*
          `if`(t=2, z, 1) +b(x-1, y+1, 0))))
        end:
    T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y-1, Min[t+1, 2]]*If[t == 2, z, 1] + b[x-1, y+1, 0]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)

Formula

G.f.: G(t, z) satisfies z(t+z-tz)G^2 - (1-z+tz)G + 1 = 0.
Sum_{k=0..n} T(n,k)*x^k = A001405(n), A001006(n), A000108(n), A033321(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 10 2009

A025568 a(n) = T(n,n+2) where T is the array defined in A025564.

Original entry on oeis.org

1, 5, 19, 65, 211, 665, 2058, 6294, 19095, 57607, 173096, 518596, 1550367, 4627455, 13795176, 41088456, 122297643, 363828663, 1081966875, 3216725841, 9561635853, 28418162003, 84455354206, 250982289650, 745860104145, 2216567725281
Offset: 1

Keywords

Crossrefs

First differences are pairwise sums of A025181.
Pairwise sums of A014532.

A026070 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A024996.

Original entry on oeis.org

1, 2, 8, 24, 76, 232, 707, 2136, 6429, 19282, 57695, 172316, 513955, 1531362, 4559271, 13566288, 40349619, 119972214, 356634978, 1059985776, 3150165270, 9361450868, 27819215185, 82670528056, 245680350995, 730149455646, 2170105711452
Offset: 3

Keywords

Crossrefs

First differences of A025181. Second differences of A014532.

Formula

Conjecture: (n+3)*a(n) +(-5*n-6)*a(n-1) +(3*n-11)*a(n-2) +(11*n-8)*a(n-3) +2*(-2*n+17)*a(n-4) +6*(-n+6)*a(n-5)=0. - R. J. Mathar, Jun 23 2013

A098470 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 5th column from the center.

Original entry on oeis.org

1, 6, 28, 112, 414, 1452, 4917, 16236, 52624, 168168, 531531, 1665456, 5182008, 16031952, 49366674, 151419816, 462919401, 1411306358, 4292487562, 13029127584, 39478598170, 119439969220, 360881425710, 1089126806040
Offset: 5

Author

Eric W. Weisstein, Sep 09 2004

Keywords

Crossrefs

Programs

  • Maple
    # Assuming offset 0:
    a := n -> simplify(GegenbauerC(n, -n-5, -1/2)):
    seq(a(n), n=0..25); # Peter Luschny, May 09 2016
  • Mathematica
    Table[GegenbauerC[n, -n - 5, -1/2], {n,0,50}] (* G. C. Greubel, Feb 28 2017 *)
  • PARI
    x='x + O('x^50); Vec(32*x^5/(sqrt((1+x)*(1-3*x))*(1-x-sqrt((1+x)*(1-3*x)))^5)) \\ G. C. Greubel, Feb 28 2017

Formula

(n^2-25)*a(n) = n*(2*n-1)*a(n-1) + 3*n*(n-1)*a(n-2). - Vladeta Jovovic, Sep 18 2004
G.f.: 32*x^5/(sqrt((1+x)*(1-3*x))*(1-x-sqrt((1+x)*(1-3*x)))^5). - Vladeta Jovovic, Sep 18 2004
a(n) = A111808(n,n-5). - Reinhard Zumkeller, Aug 17 2005
Assuming offset 0: a(n) = GegenbauerC(n,-n-5,-1/2) and a(n) = binomial(10+2*n,n)* hypergeom([-n, -n-10], [-9/2-n], 1/4). - Peter Luschny, May 09 2016
a(n) ~ 3^(n + 1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 09 2021

A116401 Triangle whose k-th column has e.g.f. exp(x)*sum{j=0..k, Bessel_I(k+j,2x)}.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 7, 9, 4, 1, 19, 26, 15, 5, 1, 51, 75, 50, 21, 6, 1, 141, 216, 161, 78, 28, 7, 1, 393, 623, 504, 273, 113, 36, 8, 1, 1107, 1800, 1554, 918, 423, 157, 45, 9, 1, 3139, 5211, 4740, 3006, 1506, 625, 211, 55, 10, 1, 8953, 15115, 14355, 9657, 5182, 2343, 891, 276
Offset: 0

Author

Paul Barry, Feb 13 2006

Keywords

Comments

First column is A002426. Second column is A005774. Third column is A014532.

Examples

			Triangle begins:
  1,
  1, 1,
  3, 3, 1,
  7, 9, 4, 1,
  19, 26, 15, 5, 1,
  51, 75, 50, 21, 6, 1
  ...
		

Crossrefs

A126218 Triangle read by rows: T(n,k) is the number of 0-1-2 trees (i.e., ordered trees with all vertices of outdegree at most two) with n edges and k pairs of adjacent vertices of outdegree 2.

Original entry on oeis.org

1, 1, 2, 4, 7, 2, 13, 8, 26, 20, 5, 52, 50, 25, 104, 130, 75, 14, 212, 322, 217, 84, 438, 770, 644, 294, 42, 910, 1836, 1806, 952, 294, 1903, 4362, 4830, 3108, 1176, 132, 4009, 10268, 12738, 9576, 4188, 1056, 8494, 24032, 33219, 27948, 14760, 4752, 429, 18080
Offset: 0

Author

Emeric Deutsch, Dec 24 2006

Keywords

Comments

Row n has floor(n/2) terms (n >= 2).
Row sums are the Motzkin numbers (A001006).
T(n,1) = A023431(n+1).
Sum_{k=0..floor(n/2)-1} k*T(n,k) = 2*A014532(n-3) (n >= 4).

Examples

			Triangle starts:
   1;
   1;
   2;
   4;
   7,  2;
  13,  8;
  26, 20,  5;
  52, 50, 25;
		

Crossrefs

Programs

  • Maple
    G:=1/2*(2*z^2*t^2-z+4*z^3*t-2*z^3*t^2-2*z^2*t-2*z^3+1-sqrt(1+4*z^3*t-4*z^2*t+z^2-2*z-4*z^3))/z^2/(z*t-t-z)^2: Gser:=simplify(series(G,z=0,18)): for n from 0 to 15 do P[n]:=sort(coeff(Gser,z,n)) od: 1;1; for n from 2 to 15 do seq(coeff(P[n],t,j),j=0..floor(n/2)-1) od; # yields sequence in triangular form

Formula

G.f.: G = G(t,z) satisfies G = 1 + zG + z^2*(1 + zG + t(G-1-zG))^2 (see the Maple program for the explicit expression).
Showing 1-10 of 10 results.