A097894 Partial sums of A014531.
1, 4, 14, 44, 134, 400, 1184, 3488, 10253, 30108, 88386, 259492, 762085, 2239120, 6582280, 19360432, 56976859, 167774428, 494301778, 1457104948, 4297477252, 12680944960, 37436553544, 110569987344, 326713395019, 965775778420
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
Crossrefs
Cf. A014531.
Programs
-
Maple
ser:=series((1-2*z-z^2)/2/z^3/(1-z)/sqrt(1-2*z-3*z^2)-1/2/z^3,z=0,32): seq(coeff(ser,z^n),n=1..28);
-
Mathematica
CoefficientList[Series[((1-2*x-x^2)/(2*x^3*(1-x)*Sqrt[1-2*x-3*x^2])-1/(2*x^3))/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *) (* adapted to the offset by Vincenzo Librandi, Feb 13 2014 *)
-
PARI
x='x+O('x^30); Vec((1-2*x-x^2)/(2*x^3*(1-x)*sqrt(1-2*x-3*x^2))-1/(2*x^3)) \\ G. C. Greubel, Dec 20 2017
Formula
G.f.: (1-2*x-x^2)/(2*x^3*(1-x)*sqrt(1-2*x-3*x^2))-1/(2*x^3). D-finite with recurrence -(n-1)*(n+3)*a(n) +(n+2)*(3n-1)*a(n-1) +(n-1)*(n+1)*a(n-2) -3*n*(n+1)*a(n-3)=0. - R. J. Mathar, Nov 17 2011
a(n) ~ 3^(n+5/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 01 2014
Comments