cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014613 Numbers that are products of 4 primes.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 184, 189, 196, 198, 204, 210, 220, 225, 228, 232, 234, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 328, 330, 340, 342, 344, 348, 350, 351, 364, 372, 375, 376
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A033987, A114106 (number of 4-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), this sequence (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[200], Plus @@ Last /@ FactorInteger[ # ] == 4 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[400], PrimeOmega[#] == 4&] (* Jean-François Alcover, Jan 17 2014 *)
  • PARI
    isA014613(n) = bigomega(n)==4 \\ Michael B. Porter, Dec 13 2009
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) == 4
    print([k for k in range(377) if ok(k)]) # Michael S. Branicky, Nov 19 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A014613(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(x//(k*m))+1),b)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 17 2024

Formula

Product p_i^e_i with Sum e_i = 4.
a(n) ~ 6n log n / (log log n)^3. - Charles R Greathouse IV, May 04 2013
a(n) = A078840(4,n). - R. J. Mathar, Jan 30 2019

Extensions

More terms from Patrick De Geest, Jun 15 1998