cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014616 a(n) = solution to the postage stamp problem with 2 denominations and n stamps.

Original entry on oeis.org

2, 4, 7, 10, 14, 18, 23, 28, 34, 40, 47, 54, 62, 70, 79, 88, 98, 108, 119, 130, 142, 154, 167, 180, 194, 208, 223, 238, 254, 270, 287, 304, 322, 340, 359, 378, 398, 418, 439, 460, 482, 504, 527, 550, 574, 598, 623, 648, 674, 700, 727, 754, 782, 810, 839, 868
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
a(n-2), for n >= 3, is the number of independent entries of a bisymmetric n X n matrix B_n with B_n[1,1] and B_n[n,n] fixed. Hence a(n-2) = A002620(n+1) - 2. See the Jul 07 2015 comment on A002620. For n=1 and n=2 this matrix B_n is fixed. Bisymmetric matrices B_n, with B_n[1,1] and B_n[n,n] fixed, are, for n >= 3, determined by giving the a(n-2) entries for [1,2], ...., [1,n-1]; [2,2], ..., [2,n-1]; [3,3], ..., [3,n-2]; ..., [ceiling(n/2),n-(ceiling(n/2)-1)]. - Wolfdieter Lang, Aug 16 2015
a(n-1) is the largest possible n-th element in an additive basis of order 2. - Charles R Greathouse IV, May 05 2020

Examples

			Bisymmetric matrix B_5, with B_5[1,1] and B_5[5,5] fixed, have a(3) free entries: for rows 1 and 2: each 3, row 3:  1, altogether 3 + 3 + 1 = 7 = a(5-2). Mark the corresponding matrix entries with x, and obtain a pattern symmetric around the central vertical. - _Wolfdieter Lang_, Aug 16 2015
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section C12, pp. 185-190.

Crossrefs

A row or column of the array A196416 (possibly with 1 subtracted from it).

Programs

Formula

a(n) = floor((n^2 + 6*n + 1)/4).
a(n) = A002620(n+3) - 2 = A024206(n+2) - 1 = (2*n*(n+6)-(-1)^n+1)/8.
G.f.: x*(-2 + x^2)/((1 + x)*(x - 1)^3). - R. J. Mathar, Jul 09 2011
a(n) = floor(A028884(n+1)/4). - Reinhard Zumkeller, Apr 07 2013
a(n)+a(n+1) = A046691(n+1). - R. J. Mathar, Mar 13 2021
a(n) = 2*n + A002620(n-1). - Michael Chu, Apr 28 2022
a(n) = A004116(n) + 1. - Michael Chu, May 02 2022
E.g.f.: (x*(7 + x)*cosh(x) + (1 + 7*x + x^2)*sinh(x))/4. - Stefano Spezia, Nov 09 2022
Sum_{n>=1} 1/a(n) = 67/36 - cot(sqrt(2)*Pi)*Pi/(2*sqrt(2)). - Amiram Eldar, Dec 10 2022

Extensions

Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from John W. Layman, Apr 13 1999