A014616 a(n) = solution to the postage stamp problem with 2 denominations and n stamps.
2, 4, 7, 10, 14, 18, 23, 28, 34, 40, 47, 54, 62, 70, 79, 88, 98, 108, 119, 130, 142, 154, 167, 180, 194, 208, 223, 238, 254, 270, 287, 304, 322, 340, 359, 378, 398, 418, 439, 460, 482, 504, 527, 550, 574, 598, 623, 648, 674, 700, 727, 754, 782, 810, 839, 868
Offset: 1
Examples
Bisymmetric matrix B_5, with B_5[1,1] and B_5[5,5] fixed, have a(3) free entries: for rows 1 and 2: each 3, row 3: 1, altogether 3 + 3 + 1 = 7 = a(5-2). Mark the corresponding matrix entries with x, and obtain a pattern symmetric around the central vertical. - _Wolfdieter Lang_, Aug 16 2015
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section C12, pp. 185-190.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Mario Bravo, Thierry Champion, and Roberto Cominetti, Universal bounds for fixed point iterations via optimal transport metrics, arXiv:2108.00300 [math.OC], 2021.
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- Alfred Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. I., Journal für die reine und angewandte Mathematik (1955), Volume: 194, page 40-65. See p. 47.
- Hugh Thomas and Stephanie van Willigenburg, Compact symmetric solutions to the postage stamp problem, arXiv:0706.3250 [math.NT], 2007-2008.
- Amitabha Tripathi, A Note on the Postage Stamp Problem, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.3.
- Eric Weisstein's World of Mathematics, Postage stamp problem.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
- Index to sequences related to the Postage Stamp Problem.
Crossrefs
Programs
-
Haskell
a014616 n = (n * (n + 6) + 1) `div` 4 -- Reinhard Zumkeller, Apr 07 2013
-
Magma
[(2*n*(n+6)-(-1)^n+1)/8: n in [1..60]]; // Vincenzo Librandi, Jul 09 2011
-
Mathematica
a[n_?OddQ] := (n^2 + 6*n + 1)/4; a[n_?EvenQ] := n*(n + 6)/4; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Dec 14 2011, after first formula *) LinearRecurrence[{2,0,-2,1},{2,4,7,10},60] (* Harvey P. Dale, Oct 04 2015 *)
-
PARI
a(n)=(n^2 + 6*n + 1)\4 \\ Charles R Greathouse IV, Feb 06 2017
Formula
a(n) = floor((n^2 + 6*n + 1)/4).
G.f.: x*(-2 + x^2)/((1 + x)*(x - 1)^3). - R. J. Mathar, Jul 09 2011
a(n) = floor(A028884(n+1)/4). - Reinhard Zumkeller, Apr 07 2013
a(n)+a(n+1) = A046691(n+1). - R. J. Mathar, Mar 13 2021
a(n) = 2*n + A002620(n-1). - Michael Chu, Apr 28 2022
a(n) = A004116(n) + 1. - Michael Chu, May 02 2022
E.g.f.: (x*(7 + x)*cosh(x) + (1 + 7*x + x^2)*sinh(x))/4. - Stefano Spezia, Nov 09 2022
Sum_{n>=1} 1/a(n) = 67/36 - cot(sqrt(2)*Pi)*Pi/(2*sqrt(2)). - Amiram Eldar, Dec 10 2022
Extensions
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from John W. Layman, Apr 13 1999
Comments